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Abstract

The mineralogy, bulk sediment geochemical composition, and U–Pb ages of detrital zircons retrieved from the
Barra del Tordo (Tordo) and Tesoro beach sediments in the northwestern Gulf of Mexico were analyzed to
determine their provenance. The beach sediments are mainly composed of quartz, ilmenite, magnetite, titanite,
zircon, and anorthite. The weathering proxies such as the Chemical Index of Alteration (CIA), Chemical Index of
Weathering (CIW), and Plagioclase Index of Alteration (PIA), reveal a moderate-to-high intensity of weathering in the
source area. The chondrite-normalized rare earth element (REE) patterns are similar to felsic igneous rocks, with
large negative europium anomaly (Eu/Eu* = ~ 0.47–0.80 and ~ 0.57–0.67 in the Tordo and Tesoro beach sediments,
respectively).
Three major zircon U–Pb age groups are identified in the Tordo and Tesoro beach sediments, i.e., Proterozoic (~
2039–595 Ma), Mesozoic (~ 244–70.3 Ma), and Cenozoic (~ 65.9–1.2 Ma). The differences of the zircon age spectrum
between the Tordo and Tesoro beach sediments are not significant. The comparison of zircon U–Pb ages in this
study with ages of potential source terranes suggests that the Mesozoic and Cenozoic zircons of the studied Tordo
and Tesoro beach sediments were derived from the Eastern Alkaline Province (EAP) and Mesa Central Province
(MCP). Similarly, the likely sources for the Proterozoic zircons were the Sierra Madre Oriental (SMOr) and Oaxaquia in
the northwestern Gulf of Mexico. The results of this study further indicate that the sediments delivered to the
beaches by rivers and redistributed by longshore currents were crucial in determining the sediment provenance.
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1 Introduction
The geochemistry of beach sediments in the Gulf of
Mexico have been studied by various authors (Rosales-
Hoz et al. 2015; Machain-Castillo et al. 2019; Ayala-Pérez
et al. 2021; Kasper-Zubillaga et al. 2021), whereas the U–
Pb ages of detrital zircons from the Gulf of Mexico coastal
sediments have not been studied extensively. Nevertheless,
U–Pb ages of zircon grains in volcanic rocks from various
terranes in Mexico such as Cuicateco, Oaxacan Complex,
Xolapa Complex, Mesa Central Province, and Eastern

Alkaline Province were widely studied (Solari et al.
2004; Rubio-Cisneros and Lawton 2011; Lawton and
Molina-Garza 2014; Juárez-Arriaga et al. 2019; Sieck
et al. 2019; Barboza-Gudiño et al. 2020; Torres-Sánchez
et al. 2020; Verma et al. 2021).
The mineralogical and geochemical compositions of

detrital sediments are commonly used to investigate the
provenance, weathering, and tectonic setting of source
area (e.g. Cullers et al. 1988; Chaudhuri et al. 2018,
2020; Critelli 2018; Al-Kaaby and Albadran 2020;
Banerjee et al. 2020; Rivera-Gómez et al. 2020; Critelli
et al. 2021; Karlik et al. 2021). Although detrital sedi-
ments are influenced by diagenesis and recycling, their
mineral and geochemistry composition is primarily
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depended on source rocks. The immobile trace elements
like REE, Cr, Hf, Nb, Ni, Th, and V are highly reliable
indicators to differentiate sediments derived from felsic
and/or mafic igneous rocks (Critelli et al. 1997, 2003;
Zeng et al. 2019; Arribas et al. 2000; Cullers 2000). Simi-
larly, chondrite-normalized REE patterns and the Eu
anomaly are also extensively utilized in various studies
to infer source rock characteristics (e.g. Bankole et al.
2020; Chaudhuri et al. 2020).
Detrital zircon U–Pb age has become a common

method to investigate zircon origin and to further dis-
criminate source terranes (e.g. Lee et al. 2015; McRivette
et al. 2019; Wang et al. 2020; Armstrong-Altrin et al.
2021). Zircon is a common mineral in acidic rocks, and
due to its resistance capacity against weathering and
thermal alteration, zircon retains U–Pb isotopic
signatures related to their origin and parent rocks
(Potter-McIntyre et al. 2018; Dew et al. 2019). Numer-
ous studies proved that detrital zircon U–Pb geochron-
ology is a powerful tool to investigate sediment
provenance and their transport pathway (e.g. Gärtner
et al. 2017; Hoskin and Ireland 2000; Al-Juboury et al.
2020). Besides, a few studies also documented the im-
portance of the combination of the zircon U–Pb age and
sediment geochemistry to infer provenance and to locate
source terranes (Turzewski et al. 2020; Zeng et al. 2020).
In this study, the mineralogy, bulk sediment compos-

ition, and U–Pb ages of detrital zircons retrieved from
the Barra del Tordo and Tesoro beaches, northwestern
Gulf of Mexico are analyzed for the aims (1) to investi-
gate the sediment provenance and (2) to identify the
source terranes supplying sediments to the beach areas.

2 Study area and geology
Forty sediment samples (3 kg each) were collected in the
Barra del Tordo (23°07′30.78″N–97°45′53.04″W) and
Tesoro (22°29′42.39″N–97°51′7.99″W) beaches, located
at the Tamaulipas State, the northwestern part of the
Gulf of Mexico (Fig. 1). A 1-cm-thick top layer of the
beach sand was removed before collecting the samples.
Approximately a 100 m interval was maintained between
sample locations. Metamorphic rocks from the Precam-
brian to the Paleozoic, marine sedimentary rocks from
the Paleozoic to the Quaternary, igneous rocks of the
Cenozoic age, and the unconsolidated Quaternary sedi-
ments are outcropped in the Tamaulipas State (Demant
and Robin 1975; Rubio-Cisneros and Lawton 2011). The
sediments in the coastal plain in the northwestern Gulf
of Mexico mainly consist of (1) Mesozoic clastic (sand-
stone, siltstone, and shale) and calcareous (limestone)
sedimentary rocks, and (2) Cenozoic volcanic rocks,
which belong to the Sierra Madre Oriental Province
(Demant and Robin 1975; Hudson 2003). The Pánuco,
Tamesí, and Soto la Marina River drainage basins

consist of arid to semi-arid Mesa Central Province, Oa-
xacan Complex, the north-south trending Sierra Madre
Oriental, and the Gulf Coastal Plain.
In summer, longshore surface currents have a north-

ward flow direction with an average velocity of 4.5 cm/s.
In winter, longshore surface currents flow towards the
south with an average velocity of 6 cm/s. Higher wind
velocities were recorded during summer, which vary
from 3.0 m/s to 5.4 m/s (Yáñez-Arancibia et al. 2009).
Monreal-Gómez et al. (1992) documented that the water
circulation and hydrodynamic condition of the Gulf of
Mexico are controlled by loop currents and anticyclonic
rings. There are “northers” associated with weather con-
ditions of a short time scale (2–3 days) with high-
pressure system that originates frequently in the Rocky
Mountains of the United States and travels from high
latitudes to the Gulf of Mexico.

3 Materials and methods
3.1 Granulometry
Twenty sediment samples from the Barra del Tordo
beach and 20 from the Tesoro beach were air-dried and
sieved by a Ro-Tap sieve Shaker using American Stand-
ard Test Materials sieves from + 7 to + 270 mesh sizes
with 0.50 ϕ interval for 40 min (ϕ being a grade-scale
that is inverse of the grain diameter; Wentworth 1922).
Cumulative curves were constructed and used to calcu-
late the statistical grain-size parameters (mean size and
sorting values) by applying the equations of Folk and
Ward (1957). The Ro-Tap sieve Shaker is located at the
Sedimentology Laboratory, Instituto de Ciencias del Mar
y Limnología (ICML), Universidad Nacional Autónoma
de México (UNAM), Mexico City.

3.2 SEM–EDS
Sand grain composition was obtained randomly by wave
dispersive analyses (WDS) using a JEOL JXA-8900R
electron microprobe housed in the Institute of Geophys-
ics, UNAM, Mexico City. Peak counting times were 40 s
for each element, except for Na and K with 10 s.

3.3 Thin-section petrography
Twenty thin-sections (10 from Tesoro beach and 10
from Tordo beach) were prepared following a common
procedure. The modal component was studied based on
the Gazzi-Dickinson point counting methodology (Gazzi
1966; Dickinson 1970). Combined organic and inorganic
stains specific for iron-rich calcite (Katz and Friedman
1965) were adopted to identify the mineralogical
variations.

3.4 Sediment composition
Twenty bulk sediment samples (10 from Tesoro beach
and 10 from Tordo beach) were powdered by an agate
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Fig. 1 Map showing beach location and simplified geology of the Gulf of Mexico coastal areas (Source: Carta Geologica; Scale: 1:1000000; Servicio Geológico
Mexicano 2008). SMOr: Sierra Madre Oriental. Y: Mesoproterozoic; Pz: Paleozoic; C: Carboniferous; PzCP: Carboniferous–Permian; P: Permian; Mz: Mesozoic;
TR: Triassic; J: Jurassic; K: Cretaceous; JK: Jurassic–Cretaceous; KPE: Cretaceous–Paleogene; T: Tertiary; PE: Paleogene; Tpa: Paleocene; Te: Eocene;
PEeo: Eocene–Oligocene; To: Oligocene; N: Neogene; M: Miocene; Nmp: Neogene–Miocene–Pliocene; Tp: Pliocene; PQ: Pliocene–Quaternary; Q: Quaternary
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mortar, and the major element concentrations were deter-
mined using a Thermo Scientific Niton FXL 950 X-Ray
Fluorescence (XRF) analyzer (Balaram 2021). Accuracy of
the major element analysis was monitored by an Inter-
national Standard Gabbro JGB1 (GSJ). The precision of
major element data was better than 5%. Loss on ignition
was obtained by weighing after combusting 1 h at 1000 °C.
Similarly, the trace and REE concentrations for 20 sedi-
ment samples were determined by a VG Elemental PQII
Plus ICP–MS and the operation procedure was similar as
the detailed in Jarvis (1988). For data calibration, the
United States Geological Survey Standard BCR-2 (Basalt,
Columbia River) was used. In general, the analytical preci-
sion was less than 5%. Eu and Ce anomalies are calculated
as Eu/Eu* = EuCN/[(SmCN)·(GdCN)]

1/2 and Ce/Ce* = CeCN/
[(LaCN)·(PrCN)]

1/2, respectively (CN means chondrite-
normalized values from Taylor and McLennan 1985).

3.5 Detrital zircon U–Pb dating
Four hundred zircon grains were analyzed for U–Pb
ages, 200 from Tordo beach (sample numbers PBT1 and
PBT13) and 200 from Tesoro beach (sample numbers
PT1 and PT19). The detrital zircon grains were hand-
picked under a binocular microscope and then mounted
in an epoxy disc. The cathodoluminescence images of
detrital zircon grains from the Barra del Tordo and
Tesoro beach sediments analyzed in this study are pro-
vided in Additional file 1 (Supplementary Information 1
and 2, respectively). Zircon U–Pb geochronology was
performed by a Laser Ablation Inductively Coupled
Plasma Mass Spectrometry (LA–ICPMS) at the Labora-
torio de Estudios Isotópicos (LEI), Centro de Geocien-
cias, UNAM.
The laser ablation system at LEI consists of a Reso-

netics M050 workstation, equipped with an LPX 220
excimer laser and an S-155 two-volume cell (Müller
et al. 2009; Paton et al. 2010; Petrus and Kamber 2012).
The laser workstation is connected to either a Thermo
ICap Qcquadrupole ICPMS or a Thermo Neptune Plus
multi-collector ICPMS. A “squid” signal homogenizer is
used right after the ablation cell before the ablated ma-
terial enters the plasma. 350 ml of He is used as carrier
gas, mixed downstream with 4.5 ml of N2. A frequency
of 5 Hz was employed, with a fluence of 6 J/cm2.
The background average was subtracted from the net

intensity measured for each isotope. The acquisition in-
volved an alternation of 2 analyses of Plešovice reference
zircon (~ 337Ma, Sláma et al. 2008), NIST 610 standard
glasses and 5 unknown zircons, using standard-
unknown bracketing method to allow downhole frac-
tionation corrections to be performed with an inhouse
developed software (Solari et al. 2010). Precision on
measured ratios of 207Pb/206Pb, 206Pb/238U, and
208Pb/232Th was ~ 0.7% with 1σ relative standard

deviation. Replicate analyses of the Plešovice zircon indi-
cate an external reproducibility of 0.8%, 0.7%, and 1.6% on
the measured 207Pb/206Pb, 206Pb/238U and 208Pb/232Th ra-
tios, respectively. These errors are quadratically included
in the quoted uncertainties for individual analyses of the
analyzed zircons. Concordia, probability density plots and
cumulative proportion curves were generated from the
corrected 207Pb/206Pb ratios and the integrated concord-
ant and discordant ages through ISOPLOT 3.70 Software
(Ludwig 2003). The Tuff-Zirc algorithm combined in the
same software was used to calculate the mean 206Pb/238U
ages and their errors, as well as to filter outliers, which are
preferred for grains younger than 1000Ma (Ludwig 1998;
Ludwig 2003). For grains with ages of < 1000Ma, the ana-
lysis was considered concordant if the 206Pb/238U and
207Pb/235U ages differed by less than 10%. For the grains
with ages > 1000Ma, the same test was carried out consid-
ering 206Pb/238U and 207Pb/206Pb ages.

4 Results
4.1 Bulk sediment
4.1.1 Textural parameters
The textural parameters for the Barra del Tordo and
Tesoro beach sediments are listed in Additional file 2
(Supplementary Information 3). The Tordo beach sedi-
ments are predominately medium-grained, moderately
sorted, near symmetrical, and very leptokurtic. On the
other hand, Tesoro beach sediments are predominantly
fine-grained, moderately sorted, near symmetrical, and
very leptokurtic.

4.1.2 Mineralogy
The minerals detected by SEM–EDS are mainly quartz,
ilmenite, magnetite, titanite, zircon, and anorthite in
both the Tordo and Tesoro beach sediments (Fig. 2). In
addition, the thin section study reveals some accessory
minerals, such as amphibole, biotite, chlorite, epidote,
feldspar, plagioclase, pyroxene, monocrystalline quartz,
lithic volcanic, lithic sediments, and bioclast in the
Tordo beach sediments (Fig. 3a–f), and biotite, chlorite,
plagioclase, and lithic volcanic in the Tesoro beach sedi-
ments (Fig. 3g–l).

4.1.3 Geochemistry
The major element concentrations of Tordo and Tesoro
beach sediments are reported in the Supplementary In-
formation 4 and their UCC-normalized patterns are
showed in Fig. 4a. SiO2 content is > 73 wt.% in Tordo
and Tesoro beach sediments, which varies between
73.2–91.4 wt.% and 82.7–84.1 wt.% respectively. The
SiO2 content shows negative correlation with TiO2,
Al2O3, Fe2O3, MgO, MnO, and CaO for Tordo beach
sediments (r = − 0.99, − 0.19, − 0.99, − 0.98, − 0.99, and −
0.63, respectively; n = 10) and for Tesoro beach
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sediments (r = − 0.19, − 0.17, − 0.06, − 0.37, − 0.43, and −
0.52, respectively; n = 10). Significantly positive correla-
tions between TiO2 vs. P2O5 (r = 0.74, n = 10) and Al2O3

vs. K2O (r = 0.72, n = 10) are observed for the Tesoro
beach sediments. The differences in major element con-
centrations between the Tordo and Tesoro beach sedi-
ments are probably related with grain size variations
(Mean grain size = 2.26 ± 0.29 and 3.11 ± 0.11, respect-
ively; Supplementary Information 3). In Tordo beach
sediments, compared to the characteristics of UCC,
an enrichment of SiO2 content is observed, whereas
Al2O3, MgO, CaO, Na2O, K2O and P2O5 are depleted
(Fig. 4a). However, in Tesoro beach sediments, UCC-
normalized major element patterns are basically dif-
ferent, except for the enrichment in SiO2 content
relative to UCC (Fig. 4a).
The trace element concentrations of the Tordo and

Tesoro beach sediments are reported in Additional file 2
(Supplementary Information 5). On the UCC-
normalized trace element plot (Fig. 4b), the trace elem-
ent concentrations of both beach sediments are depleted
relative to the UCC except Cu content. Correlations

between SiO2 and V, Sr, Rb, Th, Sc, Zr, and REE con-
tents are not significant in both Tordo (r = − 0.99, − 0.16,
0.25, − 0.96, − 0.99, − 0.99, and − 0.97, respectively; n = 10)
and Tesoro beach sediments (r = 0.13, − 0.33, − 0.09, −
0.23, − 0.38, 0.098, and − 0.03, respectively; n = 10). While
Al2O3 is negatively correlated with Co, Ni, and Zr in the
samples from Tordo (r = − 0.218, − 0.22, and − 0.21, re-
spectively) and Tesoro (r = − 0.49, − 0.31, and − 0.58, re-
spectively) beaches. Positive correlations can be observed
between Cu and Ca, Sr, Rb, Ba and Zn (r = 0.63, 0.68, 0.70,
0.71, and 0.91, n = 20) in the samples from the Tordo and
Tesoro beaches.
The REE contents in the Tordo and Tesoro beach sed-

iments are reported in Additional file 2 (Supplemen-
tary Information 5). The chondrite-normalized REE
patterns of bulk sediments are shown in Fig. 4c, and are
more fractionated in the Tordo relative to the Tesoro
beach sediments. The REE patterns are with distinct
negative europium (Eu/Eu*) anomaly. The Eu/Eu* ratios
for Tordo and Tesoro beach sediments range between ~
0.50–0.80 and ~ 0.56–0.68 respectively. A significantly
positive correlation is observed for ΣREE against TiO2,

Fig. 2 SEM–EDS spectrum for the a–c Barra del Tordo and d–f Tesoro beach sediments, northwestern Gulf of Mexico. a Quartz spectrum; b
Ilmenite spectrum; c Magnetite spectrum; d Titanite spectrum; e Zircon spectrum; and f Anorthite spectrum
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Fe2O3, MnO, MgO, Th, and Zr in Tordo (r = 0.96, 0.98,
0.98, 0.98, 0.99, and 0.99, respectively) and Tesoro (r =
0.52, 0.52, 0.60, 0.59, 0.51, and 0.72, respectively) beach
sediments.

4.2 Detrital zircon U–Pb geochronology
4.2.1 Barra del Tordo beach
The zircon U–Pb ages analyzed for Tordo beach sedi-
ments (PBT1 and PBT13) are reported in Additional file
2 (Supplementary Information 6) and their average age
groups are listed in Table 1. Among 200 analyses, 193

zircon grains yielded concordant ages (Fig. 5a and c).
The youngest concordant zircon age is 1.2 ± 0.1Ma, and
the oldest is 2094 ± 45Ma. The spectrums of U–Pb ages
of samples PBT1 and PBT13 are similar including age
populations of the Proterozoic (2094–595.8 Ma and
1732–632.2Ma, number of zircons = 34 and n = 21, re-
spectively), the Paleozoic (455.7–262Ma and 481.2–
252.5Ma, n = 5 and n = 8, respectively), the Mesozoic
(177.7–70.3Ma and 243.8–68.9Ma, n = 24 and n = 28,
respectively), and, the Cenozoic (59.5–1.2 Ma and 58.2–
1.2Ma, n = 33 and n = 40, respectively). The probability

Fig. 3 Thin-section photomicrographs for the a–f Bara del Tordo and g–l Tesoro beach sediments, northwestern Gulf of Mexico. Am: Amphibole;
Bio: Biotite; Cl: Chlorite; Ep: Epidote; Fsp: Feldspar; Ilm: Ilmenite; Ls: Lithic sediments; Lv: Lithic volcanic; Mag: Magnetite; Pl: Plagioclase; Px:
Pyroxene; Qm: Monocrystalline quartz; Qz: Quartz; Zrn: Zircon
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density plots show three major peaks (Fig. 5b and d),
which correspond to the Proterozoic, Mesozoic, and
Cenozoic.

4.2.2 Tesoro beach
The zircon U–Pb ages obtained from two samples (PT1
and PT19) are listed in Additional file 2 (Supplemen-
tary Information 7). Among 200 analyses, 188 zircons
yielded concordant ages (Fig. 6a and c). The probability

density plots for samples PT1 and PT19 are shown in
Fig. 6b and d. The youngest concordant zircon age is
23.3 ± 0.8Ma, and the oldest is 2593 ± 21Ma. Four zir-
con U–Pb age populations obtained from samples PT1
and PT19 are the Proterozoic (2593–560.4 Ma and
2039–669Ma; n = 25 and n = 30, respectively), the
Paleozoic (540–254.9Ma and 477.5–268.5Ma, n = 10
and n = 10, respectively), the Mesozoic (249.3–78.4Ma
and 244–71Ma; n = 30 and n = 28, respectively), and the
Cenozoic (64.3–25.7Ma and 65.9–23.3Ma; n = 27 and
n = 28, respectively).

5 Discussion
5.1 Elemental variations
A negative correlation of SiO2 against major (TiO2,
Al2O3, Fe2O3, MgO, MnO, CaO, and P2O5) and trace
(V, Sr, Rb, Th, Sc, Zr, and ƩREE) elements in the Barra
del Tordo beach sediments indicates that silica is hosted in
quartz rather than accessory minerals. Similarly, a negative
correlation between Al2O3 and Co, Ni, Zr for Tordo and
Tesoro beach sediments indicates an association of Al2O3

with accessory minerals rather than aluminosilicates. A
positive correlation between TiO2 and P2O5 in Tordo and
Tesoro beach sediments indicates a similar source and their
association with accessory minerals. An enrichment in
TiO2, Fe2O3, and MnO contents is noted in samples PBT1
and PBT7, indicating their association with magnetite.
Similarly, a positive correlation of ΣREE versus TiO2,
Fe2O3, MnO, MgO, Th, and Zr in the Tordo and Tesoro
beach sediments is suggestive of the association of REE
with accessory minerals. Cu reveals a positive correlation

Fig. 4 a Upper continental crust (UCC)-normalized diagram for
major element concentrations of the Barra del Tordo and Tesoro
beach sediments; b UCC-normalized diagram for trace element
concentrations of the Barra del Tordo and Tesoro beach sediments;
c Chondrite-normalized REE patterns for the Barra del Tordo and
Tesoro beach sediments. The UCC and chondrite values are from
Taylor and McLennan (1985)

Table 1 Detrital zircon U–Pb age groups of the Barra del Tordo
and Tesoro beach sediments, northwestern Gulf of Mexico (refer
Additional file 2 for complete data)

Barra del Tordo beach sediments

Age population Number of zircon grains

PBT1 PBT13

Proterozoic (2094–595.8 Ma) 34 21

Paleozoic (481.2–252.5 Ma) 5 8

Mesozoic (243.8–68.9 Ma) 24 28

Cenozoic (59.5–1.2 Ma) 33 40

Total 96 97

Tesoro beach sediments

Age population Number of zircon grains

PT1 PT19

Proterozoic (2593–560.4 Ma) 25 30

Paleozoic (540–254.9 Ma) 10 10

Mesozoic (249.3–71 Ma) 30 28

Cenozoic (69.9–23.3 Ma) 27 28

Total 92 96
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against Ca, Sr, Rb, Ba, and Zn for Tordo and Tesoro beach
sediments and indicates the association of these elements
with a similar source. The REE fractionation of Tordo
beach sediments is probably due to the effect of
weathering.

5.2 Sediment weathering and sorting
The chemical composition of detrital sediments is highly
useful to interpret sediment recycling and intensity of
weathering (Devi et al. 2017; Basu 2020; Patra and
Shukla 2020; Verlekar and Kotha 2020). In this study,
weathering indices like Chemical Index of Alteration
(CIA; Nesbitt and Young 1982), Chemical Index of
Weathering (CIW; Harnois 1988), and Plagioclase Index
of Alteration (PIA; Fedo et al. 1995) are applied to infer
the intensity of weathering (Supplementary Information
4). The CIA, CIW, and PIA values in the Tordo and
Tesoro beach sediments vary between ~ 44.6–57.5, ~
47.5–74.5, and ~ 41.9–63.8 respectively, indicating

moderate to high intensity of weathering in the source
area (Supplementary Information 4).
Hydraulic sorting of sediments can be evaluated by the

Index of Compositional Variability (ICV), which decreases
when weathering increases (Cox et al. 1995). The ICV
values of Tordo beach sediments vary from 0.95 to 2.41,
except for two samples PBT1 and PBT7, which show
higher values relative to other samples (9.4 and 5.2, re-
spectively). ICV values of Tesoro beach sediments range
between 1.61 and 1.78 (Supplementary Information 4).
According to Cox et al. (1995), ICV > 1 indicates little-
weathered detrital minerals like feldspar, and ICV < 1 rep-
resents fine-grained sediments like clay. In general, ICV
values in Tesoro and Tordo beach sediments are larger
than 1, indicating the dominance of detrital minerals.

5.3 Provenance
5.3.1 Geochemistry
To infer the provenance of the Barra del Tordo and
Tesoro beach sediments, we employed a provenance

Fig. 5 U–Pb concordia diagrams and histograms showing the relative age probability distribution of detrital zircon grains from samples PBT1 (a
and b) and PBT13 (c and d) of the Barra del Tordo beach sediments, northwestern Gulf of Mexico. n = Number of zircon grains
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discrimination diagram based on the major oxides
(Roser and Korsch 1988), which is frequently used in
various studies (e.g. Tawfik et al. 2018; Bineli et al. 2020;
Madhavaraju et al. 2020; Mustafa and Tobia 2020). On
this plot, the samples are clustered in the quartzose sedi-
mentary provenance field (Fig. 7), indicating a recycled
quartzose provenance. Besides, the TiO2/Zr ratio in
detrital sediments is one of the best indicators on source
rock types (Girty et al. 1996). TiO2/Zr ratio values are
higher in mafic igneous (> 195) rocks than in intermedi-
ate (~ 55–195) and felsic (< 55) igneous rocks. The
TiO2/Zr ratios are very low in the Tordo and Tesoro
beach sediments (~ 0.05–0.22 and ~ 0.04–0.09, respect-
ively), indicating their derivation from felsic source
rocks.
Trace element concentrations of sediments, particu-

larly immobile elements like La, Sc, Co, Cr, Th, and REE
are helpful to predict the nature of source rocks, due to
a compositional difference between silicic and mafic
rocks (e.g. Anaya-Gregorio et al. 2018; Cullers 2000).
Hence, the immobile elements and their elemental ratios

are utilized in various studies to differentiate source
rocks (e.g. Damian et al. 2019; Hossain 2019; Tobia and
Shangola 2019; Patra and Shukla 2020; Ekoa Bessa et al.
2021). La/Sc, La/Co, Th/Sc, and Cr/Th ratios in the
Tordo and Tesoro beach sediments are compared with
sediments derived from felsic and mafic sources, as well
as with average UCC values (Supplementary Information
8). This comparative study reveals that these sediments
were likely derived from felsic source rocks. Further-
more, the relative chondrite-normalized REE pattern
and the Eu anomaly have also been used to infer the
source of clastic sediments (e.g. Cullers 2000; Hernán-
dez-Hinojosa et al. 2018; Kettanah et al. 2021; Madha-
varaju et al. 2021). The REE patterns of the Tordo and
Tesoro beach sediments are both with a significantly
negative Eu anomaly, indicating felsic igneous rocks as
their sources (Fig. 4c).

5.3.2 Geochronological evidence
Three major zircon U–Pb age populations are identified
in the Barra del Tordo and Tesoro beach sediments

Fig. 6 U–Pb concordia diagrams and histograms showing the relative age probability distribution of detrital zircon grains from samples PT1 (a
and b) and PT19 (c and d) of the Tesoro beach sediments, northwestern Gulf of Mexico. n = Number of zircon grains
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(Table 1; Fig. 8), i.e., (1) Proterozoic (2094–595.8Ma
and 2593–560.4Ma respectively); (2) Mesozoic (243.8–
68.9Ma and 249.3–71Ma respectively); and (3)
Cenozoic (59.5–1.2 Ma and 65.9–23.3Ma, respectively).
Detrital zircon U–Pb dating ages of this study are com-
pared with the detrital zircon ages from potential source
terranes of northwestern Mexico (Fig. 8).
The Proterozoic age population in this study is similar

to zircon U–Pb ages reported from the Sierra Madre
Oriental, Tamaulipas State, which represent the Grenvil-
lian (~ 1250–920Ma) and the Pan-African orogen period
(~ 730–530Ma). Another likely source for the Proterozoic
zircons of the Tordo and Tesoro beaches is the Oaxacan
Complex, which contains extensive outcrops of the Gren-
villian basement rocks (Barboza-Gudiño et al. 2010; Solari
et al. 2014). Weber et al. (2010) reported the zircon U–Pb
ages from the Oaxacan Complex, which vary from 1500
Ma to 950Ma. Recently, Vega-Granillo et al. (2020)
assigned a Proterozoic age for the zircons dated from the
northern part of the Oaxacan Complex (~ 1300–950Ma).
Furthermore, Escalona-Alcázar et al. (2016) and Barboza-
Gudiño et al. (2020) reported the Proterozoic age zircons
in the Mesa Central Province and they inferred that the
Oaxacan Complex is the potential source terrane which
supplied Proterozoic zircons to the Mesa Central. Hence,
here it is inferred that the potential source terranes, which
contributed Proterozoic age zircons to the Tordo and

Tesoro beaches, are Sierra Madre Oriental and Oaxacan
Complex. Besides, although the numbers of Paleozoic age
zircons are both rare in Tordo (n = 13) and Tesoro (n =
20) beach sediments, we infer that the likely source for
theses Paleozoic zircons is the La Joya Formation in the
Mesa Central Province (the Huizachal Group; Rubio-
Cisneros and Lawton 2011) due to the resemblance of
zircon U–Pb ages (~ 256–222Ma; Rubio-Cisneros and
Lawton 2011).
The Mesozoic age population representing the likely

source terrane, which supplied Mesozoic zircons to the
beach areas, is the Mesa Central Province. The Mesa
Central Province consists of Zacatecas, Nazas, and La
Joya sedimentary formations (Zavala-Monsiváis et al.
2012). Lawton and Molina-Garza (2014) reported zircon
age populations of the Zacatecas and Nazas Formations
in northeastern Durango, which vary between ~ 250–
179Ma and ~ 280–200Ma, respectively. In addition,
Escalona-Alcázar et al. (2016) reported zircon U–Pb ages
analyzed from the conglomerate of Zacatecas Formation
in the Eastern Alkaline Province, and inferred the
maximum depositional age of ~ 81Ma. Recently, Juárez-
Arriaga et al. (2019) dated zircons from different sedi-
mentary formations in the Mesa Central Province and
reported the following ages: (1) Tezapotla (84 ± 0.6Ma),
(2) Alamar (79.2 ± 1Ma), (3) Jalpan-Conca (78.7 ± 0.05
Ma), and (4) Agua Zarca (77.9 ± 0.5Ma). Based on the

Fig. 7 Provenance discriminant function (DF) diagram for the Barra del Tordo and Tesoro beach sediments (modified after Roser and
Korsch 1988). DF 1 = (− 1.773·TiO2) + (0.607·Al2O3) + (0.760·Fe2O3) + (− 1.500·MgO) + (0.616·CaO) + (0.509·Na2O) + (− 1.224·K2O) + (− 9.090);
DF 2 = (0.445·TiO2) + (0.070·Al2O3) + (− 0.250·Fe2O3) + (− 1.142·MgO) + (0.438·CaO) + (1.475·Na2O) + (1.426·K2O) + (− 6.861)
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Fig. 8 Histograms for comparing ages of potential source terranes from northwestern Mexico with detrital zircon ages in the present study. a Sierra
Madre Oriental; b Mesa Central Province; c − d Tesoro beach (this study); e Oaxacan Complex; f Eastern Alkaline Province; g − h Barra del Tordo beach
(this study). Age distribution of zircons from potential source terranes in the northwestern Mexico are after Barboza-Gudiño et al. (2010), Weber et al.
(2010), Rubio-Cisneros and Lawton (2011), Zavala-Monsiváis et al. (2012), Lawton and Molina-Garza (2014), Solari et al. (2014), Escalona-Alcázar et al.
(2016), Juárez-Arriaga et al. (2019), Sieck et al. (2019), Barboza-Gudiño et al. (2020), and Vega-Granillo et al. (2020)
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comparison of zircon ages, it is identified that the Mesa
Central Province is the source terrane, which supplied
Mesozoic zircons to the beach areas.
The Cenozoic age population represents the Eastern Al-

kaline Province (EAP), which includes various volcanic
fields, located in the Gulf of Mexico coastal region (Verma
et al. 2020). The zircon ages reported from the EAP vol-
canic fields range from 8.0Ma to 2.82Ma. For instance,
zircon ages inferred by K–Ar and Ar–Ar dating are ≦9Ma
in the Tlanchinol succession (7.33–2.82Ma), Sierra Tan-
tima (~ 9.0Ma), and Alamo volcanic field (~ 6.91Ma) of
the EAP (Sieck et al. 2019). Another source for the
Cenozoic age zircons is the Mesa Central Province

(MCP), which consists of three tectonomagmatic stages
(Sieck et al. 2019). First, a long phase of andesitic to da-
citic arc volcanism (~ 45–31Ma) connected with the sub-
duction of the Farallon Plate that lasted until Eocene–
Oligocene. Second is an extension-related phase (~ 32–25
Ma) overlapped with the Oligocene to Miocene basin. The
third stage corresponds to an Early Miocene (~ 23–20
Ma) mafic magmatism that marked the evolution from a
continental arc regime to intraplate volcanism. Hence, the
similarity in zircon age populations of this study with EAP
and MCP reveals that these provinces are the likely
sources for the Cenozoic zircons of the Tordo and Tesoro
beaches.

Fig. 9 Simplified diagram showing river drainage basins and source terranes, which contributed detrital zircons to the Barra del Tordo and Tesoro
beaches in the northwestern Gulf of Mexico. The longshore current illustrations are after Monreal-Gómez et al. (1992). Source rocks are inferred
through the zircon U − Pb ages compiled from Weber et al. (2010), Zavala-Monsiváis et al. (2012), Lawton and Molina-Garza (2014), Escalona-
Alcázar et al. (2016), Silva-Romo et al. (2018), Juárez-Arriaga et al. (2019), Sieck et al. (2019), Barboza-Gudiño et al. (2020), and Vega-Granillo et al.
(2020). SC: San Carlos; ST: Sierra de Tamaulipas; TTA: Tlanchinol−Tantima−Alamo; VH: Valle de Huizachal
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Based on the above discussions, it is assumed that the
San Fernando, Soto la Marina, Tamesí, and Pánuco Rivers
drained along the Sierra Madre Oriental, Mesa Central
Province, and Oaxacan Complex carried sediments to the
Barra del Tordo and Tesoro beaches and played an im-
portant role in defining the sediment source. The probable
sediment transport pathway is briefly illustrated in Fig. 9.

6 Conclusions
The mineralogy, sediment composition, and zircon U–Pb
ages were analyzed to identify the sources, which supplied
sediments to the Barra del Tordo and Tesoro beaches in
the northwestern Gulf of Mexico. The results of this study
reveal that the Barra del Tordo and Tesoro beach sedi-
ments are mainly composed of quartz, ilmenite, magnetite,
zircon, titanite, and anorthite. The weathering indices like
CIA, CIW, and PIA indicate a moderate to high intensity
of weathering in the source area. The major element con-
centrations, trace elemental ratios of La/Sc, La/Co, Th/Sc,
and Cr/Th, and REE patterns with prominent negative Eu
anomaly in the Barra del Tordo and Tesoro beach sedi-
ments all indicate a felsic provenance.
Zircon U–Pb dating for the Barra del Tordo and Tesoro

beach sediments suggests three dominant age peaks: Pro-
terozoic (~ 2593–560.4Ma), Mesozoic (~ 249.3–68.9Ma),
Cenozoic (~ 69.9–1.2Ma). Differences in U–Pb age popu-
lations between the Barra del Tordo and Tesoro beach
sediments are not significant, suggesting a similar proven-
ance. It is inferred that the Proterozoic zircons in the
beach areas were transported from the Grenvillian igneous
suites in the Oaxacan Complex as well as from the Sierra
Madre Oriental. The potential suppliers for the Mesozoic
and Cenozoic age zircons to the beach areas are the East-
ern Alkaline and Mesa Central Provinces, among which
the Mesa Central Province is the major contributor of sed-
iments to the Barra del Tordo and Tesoro beach areas.
Furthermore, the San Fernando, Soto la Marina, Tamesí,
and Pánuco Rivers in the northwestern Gulf of Mexico
are interpreted to deliver source sediments to the beach
areas, which were subsequently mixed by longshore
currents.
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