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Abstract

The middle Miocene Badenian evaporite basin of the Carpathian Foredeep Basin was a saline lake, separated by a
barrier from the sea and supplied with seawater seeping through the barrier or overflowing it occasionally in the
form of short-lived marine transgressions. Such transgressions could leave behind marine microfossils in marly clay
intercalations. One of them (2.3 m thick) occurs in the uppermost part of the sulphate sequence, in the unit ‘0, in
the Babczyn 2 borehole section. It contains marine palynomorphs (dinoflagellate cysts) and foraminiferal
assemblages indicating a marine environment. The low-diversity benthic foraminiferal assemblages are dominated
by opportunistic, shallow infaunally living species, preferring muddy or clayey substrate for thriving, brackish to
normal marine salinity, and inner shelf environment. Dinoflagellate cyst assemblages, although taxonomically
impoverished, consist of marine species; euryhaline forms that tolerate increased salinity are missing. Relatively
common microfossils found in clay intercalations within gypsum have important palaesogeographical implications:
they strongly suggest that there existed an additional inflow channel supplying the Polish Carpathian Basin from
the south during the evaporite deposition and afterwards.
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1 Introduction

The Paratethys was an epicontinental sea that developed
as a relic of the Tethys. It existed between early
Oligocene and late middle Miocene times and consti-
tuted a system of marine basins extending from the
Alpine-Carpathian region to the modern Aral Sea during
Oligocene to Miocene times. They were periodically
connected with the Mediterranean, Indo-Pacific and
Atlantic oceans (Rogl 1998). The Paratethys is divided
into three segments: Western, Central and Eastern, and
the regional time scale, based mostly on endemic fossil
assemblages, is applied for particular parts of the
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Paratethys (Fig. 1). Water circulation in the Paratethys
was strongly controlled by two shallow and narrow gate-
ways: the Slovenian (Trans-Tethyan Trench) corridor
(Rogl 1998; Kovac et al. 2017) and the Barlad Strait in
Romania (Palcu et al. 2015) connecting the Central and
Eastern Paratethys. Both gateways were located in
tectonically active regions (Simon et al. 2019) and
controlled the recorded palaeoenvironmental changes in
these basins, although the exact mechanisms are still
poorly understood (Palcu et al. 2017). At 13.8 Ma, the
global climate cooled, triggering a glaciation, which led
to a global sea-level fall of ~50-70m (John et al. 2011;
Simon et al. 2019), which drastically reduced the Trans-
Tethyan Strait to a very shallow depth and disconnected
the two Paratethyan basins (Fig. 2). The Badenian
Salinity Crises ended before 13.32 + 0.07 Ma (de Leeuw
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Fig. 1 Regional middle Miocene Paratethyan stratigraphy in comparison with the standard global chronostratigraphy (modified after Sliwiriski
et al. 2012 and Hilgen et al. 2012, updated by Palcu et al. 2015, 2017) and the occurrence of microfossils-bearing clay intercalation (arrowed) in
the Babczyn 2 borehole section. Numbers right of the borehole section indicate the depth (in metres); allochth. g. u. = Autochthonous
gypsum unit
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et al. 2018). A transgression that re-installed normal
marine conditions in the Carpathian Foredeep Basin
resulted from reconnection of the basin with the
Mediterranean and Eastern Paratethys, primarily by
tectonic modification of the interconnecting gateways,
i.e. tectonic lowering of the barriers between the
Central Paratethys and the neighbouring basins (de
Leeuw et al. 2018).

The system of middle Miocene Badenian evaporite ba-
sins of the Central Paratethys (Fig. 2), which started to
form at some 13.81 Ma, gained occasional connections
with the Mediterranean marine reservoir through the
Slovenian (Trans-Tethyan Trench) corridor or with the
Eastern Paratethys (low-salinity water reservoir — Palcu
et al. 2017) through the Barlad Strait. Barred evaporite
basins are sourced mostly by seepage (Kendall 2010;
Warren 2016). When overflow happens, then depending
on the volume of seawater inflow and the overflow dur-
ation, the brines of barred basin may be eventually re-
placed by seawater. One eminent connection of barred
evaporite basin of the Carpathian Foredeep Basin with
an open-sea reservoir was previously recognized in the
middle part of the gypsum sequence of southern Poland
where a marly clay intercalation sandwiched between
the gypsum contains benthic and planktonic foramin-
ifera indicating a short-lived inflow of marine water
(Peryt 2013a; Fig. 2). The foraminifer-bearing clay inter-
calation in southern Poland occurs in the middle of the
upper part of the gypsum sequence, ie. at the same
stratigraphic position as other foraminifer-bearing clay
intercalations in the gypsum sequence, which were

recorded by Odrzywolska-Biefikowa (1975) in SE Poland
(cf. Pawlowski et al. 1985; Kos in Kasprzyk 1989; Kubica
1992). In this paper, we report the foraminiferal and
dinoflagellate cysts assemblages from the clay intercal-
ation of the topmost part of the gypsum sequence in the
Babczyn 2 borehole (SE Poland; Fig. 2). These
assemblages indicate marine invasion into the Central
Paratethys prior to the termination of the evaporite stage
that occurred 13.36 Ma when the Central Paratethys
returned to open-marine conditions, and the Eastern
Paratethys remained more brackish (Simon et al. 2019).

2 Geological setting

Badenian sulphate deposits occur in most of the north-
ern and northeastern Carpathian Foredeep Basin from
Moravia in Czech Republic in the west through southern
Poland and western Ukraine to the Ukrainian-Romanian
borderland and Moldova (Peryt 2006, 2013b). Sulphate
deposits in southeastern Poland consist of a sequence of
lithofacies grouped into 18 lithostratigraphic units (from
‘a’ to r’; Kasprzyk 1993) or seven lithosomes (from ‘A’ to
‘G’; Kubica 1992, 1994; Babel 2005). In SE Poland, in the
Lubaczéw area located close to the Polish-Ukrainian
border (Fig. 2), the primary gypsum is partly or
completely replaced by anhydrite and secondary gypsum
(Kasprzyk 1995). In the Cieszanéw 1 borehole, units
‘a’—‘0’ have a total thickness of 44.8 m (Kasprzyk 1995),
and in the Babczyn 2 borehole the gypsum sequence (32
m thick, depth 409-441m) consists of units ‘a™~1 and
‘m’—‘0’ (the upper part of the sequence is shown in Fig.
2, after Peryt and Kasprzyk 1992). Unit ‘m’ is composed
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Fig. 2 Geological setting. a Sections of Badenian gypsum of the Borkdw quarry (after Peryt and Jasionowski 1994) and Babczyn 2 borehole
(middle and upper parts, after Peryt and Kasprzyk 1992; lower part is not shown); black arrows show the intercalations of microfossils-bearing
clays described by Peryt (2013a) and this paper, respectively; alabastrine gypsum — alabastrine gypsum originated due to recrystallization of fine-
grained gypsum precipitated in association with microbial mats (cf. Orti Cabo et al. 1984) and then transported during storms (cf. Kwiatkowski
1972); sabre gypsum — gypsum type composed of curved gypsum crystals resembling sabres which grew upwards and simultaneously curved
laterally, thus most crystals are inclined and curved in the same direction (Babel 1986); b Simplified palaeogeographic reconstruction of
Mediterranean-Paratethys connection during Badenian Salinity Crisis interval (modified after de Leeuw et al. 2010); star marks location of the
Babczyn 2 borehole; ¢ Location map of the Babczyn 2 borehole (after Peryt and Kasprzyk 1992) and the sulphate lithofacies of the Polish

Carpathian Foredeep (after Kasprzyk 2005 and Bukowski 2011: fig. 10)

of laminated and bedded microcrystalline gypsum that
contains layers and irregular bodies of gypsiferous, occa-
sionally brecciated, microbial-peloidal carbonate, while
unit ‘n’ consists of thinly laminated gypsum with three
beds of carbonate-gypsum breccias in the middle part.
Unit ‘0’ is nodular gypsum intercalated by a 2.3 m layer
of marly clays (depth: 413-4153m) rich in plant

remains and carbonate lithoclasts (Pawlowska and
Kubica: Karta otworu wiertniczego Babczyn 2, unpub-
lished) as well as crushed mollusc (Modiolus?) shell frag-
ments (Sliwiniski et al. 2012). Interpretation by Peryt and
Kasprzyk (1992) assumed that, following a sea-level drop
after the deposition of unit ‘n’, very shallow subaqueous
and subaerial conditions prevailed during deposition of
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unit ‘o’ (Peryt and Kasprzyk 1992). Accordingly, this
marly clay is younger than unit ¥ in which Peryt
(2013a), in the Borkéw quarry section (Fig. 2), re-
corded previously the benthic foraminifer assemblages
composed of pioneer, opportunistic, r-selected species
dominated by elphidiids.

3 Material and methods

For the foraminiferal study, all samples of approximately
200 g were disaggregated in Glauber’s salt, cleaned in an
ultrasonic bath, dried and sieved into a > 63 pm size frac-
tion. An aliquot of about 200-300 specimens of foram-
inifers was picked for the faunal analysis. The
classification scheme used follows Loeblich Jr. and Tap-
pan (1987), Cicha et al. (1998), Pawlowski et al. (2013)
and Dubicka (2019). The palaeoenvironmental interpret-
ation was based on foraminifers and the requirements of
present-day representatives of recorded taxa (e.g. Walton
and Sloan 1990; Verhallen 1991; Murray 1991, 2006; Jor-
issen et al. 1992; Sen Gupta and Machain-Castillo 1993;
Kaiho 1994; Hayward et al. 1997; Loubere 1997; Alve
and Murray 1999; Bernard and Sen Gupta 1999; Vanicek
et al. 2000; Buzas-Stephens et al. 2003; Fiorini 2004;
Kouvenhoven and van der Zwaan 2006; Debeney et al.
2009; Kaminski 2012; Schiebel and Hemleben 2017).
The figured specimens are deposited in the Institute of
Paleobiology, Polish Academy of Sciences, Warszawa
(ZPAL F. 68).

The samples for the palynological study were proc-
essed following the procedure including 38% hydro-
chloric acid (HCI) dissolution, 40% hydrofluoric acid
(HF) dissolution, heavy liquid (ZnCl, +HCI; density
2.0g/cm®) separation, and sieving at 15um on a
nylon mesh in ultrasounds for 10-15s. No oxidation
in nitric acid (HNOj3, fuming) was applied. The quan-
tity of each rock sample processed was 10g. Two
slides from each sample were made using glycerine
jelly as a mounting medium. Dinoflagellate cysts were
qualitatively determined up to 300 specimens using a
Zeiss Axiolab microscope; the remaining specimens
were scanned for their taxonomy only. Palynofacies
for each sample were calculated based on 500 parti-
cles. The unprocessed rock samples, palynological res-
idues and slides are stored in the collection of the
Institute of Geological Sciences, Polish Academy of
Sciences, Research Centre in Krakéw.

4 Results

Low-diversity foraminiferal assemblages are recorded in
the interval studied (Table 1; Figs. 3, 4 and 5). Their
preservation is poor to moderate. Foraminiferal tests are
mostly recrystallized and often broken. The benthic fora-
miniferal assemblages consist entirely of calcareous spe-
cies of very small and tiny tests. They are dominated by
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3 taxa, i.e. Nonion parvus, Haynesina depressula and
Ammonia spp. (mainly A. parkinsoniana; also common
transitional forms from parkinsoniana to tepida and A.
tepida). They form 60% to 80% of the assemblages
(Fig. 6). Elphidium spp. is also a common and persistent
contributor to the assemblages (6%—20%). Minor com-
ponents are Rosalina obtusa and hauerinids (Quinquelo-
culina sp., Triloculina sp., Pseudotriloculina consobrina,
and Sigmoilinita tenuis) forming up to 5% of the assem-
blages. Nonion parvus and Ammonia spp. fluctuate sig-
nificantly throughout the interval. Relative abundance of
Ammonia spp. varies between 6% and 62%; Nonion parvus
accounts for 9% to 64%. Foraminiferal assemblages from
samples 2 and 4 represent near-monospecific faunas (Hay-
ward 2014). In sample 2, Ammonia spp. makes 62% of the
assemblage; other components do not exceed 10% each.
In sample 4, Nonion parvus makes up 64% of the
assemblage, while the contribution of Ammonia spp. drops
to 6% (Fig. 6).

The species show small sizes compared to usual di-
mensions. Planktonic foraminifera are scarce. They are
represented mainly by small-sized Globigerina (G. tarch-
anensis), Trilobatus (T. altospiralis), Globoturborotalita
cf. druryi, Tenuitellinata sp. Redeposited Eocene and
Cretaceous foraminifers are quite common.

The 2.3-m-thick layer of marly clays yielded high
amounts of palynological organic matter composed
chiefly of terrestrial elements — mainly dark brown and
black phytoclasts and pollen grains, the proportions of
which oscillate between 80% and 90%. Marine elements
that are present throughout the whole interval — dinofla-
gellate cysts, other algae and subordinate foraminifera
organic linings, are up to a few per cent. Amorphous or-
ganic matter (AOM) is also present in the whole inter-
val; except for sample 3, where it does not exceed 10%
(Fig. 6).

Dinoflagellate cysts are well to moderately pre-
served, being all light-coloured (Table 1; Figs. 7, 8
and 9). Their assemblages are dominated by three
taxa: Spiniferites (mainly S. ramosus), Operculodinium
and Systematophora placacantha (Table 2). Propor-
tions of these taxa fluctuate slightly, but generally
Spiniferites is most common in all these samples; Sys-
tematophora placacantha is most frequent in basal
samples, and becomes rarer in the upper part of the
interval. They are accompanied by subordinate Lingu-
lodinium machaerophorum, Pentadinium laticinctum,
Labyrinthodinium  truncatum,  Melitasphaeridium
choanophorum and Pyxidiniopsis. A characteristic fea-
ture of the dinoflagellate cyst assemblages is almost
complete lack of peridinioids. There are no Palaeocys-
todinium (known from older Badenian strata of the
Carpathian Foredeep). Rare specimens of Lejeunecysta
may be reworked.
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Table 1 Identified taxa (asterisked are reworked species)

BENTHIC FORAMINIFERA

Ammonia parkinsoniana (d'Orbigny 1839)
Ammonia tepida (Cushman 1926)
Ammonia sp.

Asterigerinata planorbis (d'Orbigny 1846)
Bolivina plicatella Cushman 1930

Bolivina pokornyi Cicha & Zapletalova 1963
Bolivina sp.

Elphidium aculeatum (d'Orbigny 1846)
Elphidium cf. joukovi Serova 1955

Elphidium sp.

Favulina hexagona (Williamson 1848)
Haynesina depressula (Walker & Jacob 1798)
Haynesina sp.

?Haynesina sp.

Lobatula lobatula (Walker & Jacob 1798)
Nonion parvus Bogdanovich 1950
Pseudotriloculina consobrina (d'Orbigny 1846)
Quinqueloculina sp.

Rosalina obtusa d'Orbigny 1846
PLANKTONIC FORAMINIFERA
Globigerinelloides sp.

Globigerina bulloides d'Orbigny 1826
Globigerina tarchanensis Subbotina & Khutsieva 1950
Globoturborotalita cf. druryi (Akers 1955)
Tenuitellinata? sp. A

Tenuitellinata? sp. B

Trilobatus altospiralis Spezzaferi 2018

Trilobatus sp.

DINOFLAGELLATE CYSTS
Achomosphaera sp.

Alisogymnium euclaense* (Cookson & Eisenack 1970) Lentin &
Vozzhennikova 1990

Alterbidinium? sp.*

Areoligera sp.*

Areosphaeridium diktyoplokum* (Klumpp 1953) Eaton 1971
Areosphaeridium michoudii* Bujak 1994

Cerodinium sp.*

Charlesdowniea sp.*

Chiropteridium? sp.*

Circulodinium sp.*

Cordosphaeridium minimum s.I. (Morgenroth 1966) Benedek 1972
Cordosphaeridium sp.*

Dapsilidinium sp.

Deflandrea sp.*
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Table 1 Identified taxa (asterisked are reworked species)
(Continued)

Dinogymnium sp.*

Enneadocysta arcuata* (Eaton 1971) Stover & Williams 1995
Enneadocysta sp.*
Florentinia sp.*

Glaphyrocysta semitecta* (Bujak in Bujak et al. 1980) Lentin et Williams
1981

Glaphyrocysta sp.*

Homotryblium abbreviatum* Eaton 1976

Homotryblium floripes* (Deflandre & Cookson 1955) Stover 1975
Homotryblium plectilum* Drugg & Loeblich Jr. 1967
Homotryblium tenuispinosum* Davey & Williams 1966
Hystrichokolpoma spp.

Hystrichosphaeropsis obscura Habib 1972

Impagidinium? aculeatum (Wall 1967) Lentin & Williams 1981
Impagidinium spp.

Labyrinthodinium truncatum Piasecki 1980

Lejeunecysta spp.

Lingulodinium machaerophorum (Deflandre & Cookson 1955) Wall 1967

Melitasphaeridium choanophorum (Deflandre & Cookson 1955) Harland &
Hill 1979

Melitasphaeridium? pseudorecurvatum (Morgenroth 1966) Bujak et al.
1980

Nematosphaeropsis sp.

Operculodinium centrocarpum (Deflandre & Cookson 1955) Wall 1967
Operculodinium spp.

Palynodinium grallator* Gocht 1970

Pentadinium laticinctum Gerlach 1961

Pentadinium sp.

Pyxidinopsis psilata Wall & Dale 1973

Pyxidinopsis? sp.

Reticulatosphaera actinocoronata (Benedek 1972) Bujak & Matsuoka 1986
Rottnestia borussica* (Eisenack 1954) Cookson & Eisenack 1961
Spiniferites pseudofurcatus (Klumpp 1953) Sarjeant 1970

Spiniferites ramosus (Ehrenberg 1838) Mantell 1854

Spiniferites spp.

Surculosphaeridium sp*

Systematophora placacantha (Deflandre & Cookson 1955) Davey et al.
1969

Tanyosphaeridium sp.*
Wetzeliella sp.*

Gen. et spec. Indet.

ACRITARCHS
Svenkodinium sp. (acritarch)

Veryhachium sp. (acritarch)
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Fig. 3 Benthic foraminifers from the Babczyn 2 borehole. a, b Nonion parvus; ¢ Quinqueloculina sp.; d, e Haynesina depressula; f Pseudotriloculina
consobrina; g Elphidium cf. joukovi; h Elphidium aculeatum; i Bolivina plicatella; j Elphidium sp. (sample 2/4); k?Haynesina sp.; | Bolivina sp.; m
Rosalina obtusa; n Favulina hexagona; o Bolivina pokornyi. Scale bar=100 um; a-e, g-h, m: Sample 1; f: Sample 6; i, k-I. Sample 3; j, n-o:
Sample 4
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Fig. 4 Benthic and planktonic foraminifers from the Babczyn 2 borehole. a, b Haynesina depressula; ¢ Haynesina sp.,; d Lobatula lobatula; e
Ammonia sp. (transitional from parkinsoniana to tepida); f Nonion parvus; g Elphidium sp.; h Asterigerinata planorbis; i Globoturborotalita cf. druryi; j
Globigerinelloides sp. (Cretaceous form). Scale bar= 100 um; a, d, f, g, j: Sample 5; b, e, h, i: Sample 6; c: Sample 7

A
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Fig. 5 Planktonic foraminifers from the Babczyn 2 borehole. a Trilobatus sp.; b Tenuitellinata? sp. A; ¢ Trilobatus altospiralis; d Tenuitellinata? sp. B;
e Globigerina bulloides; f Globoturborotalita cf. druryi; g Globigerina tarchanensis. Scale bar = 100 um; a, e-g: Sample 6; b, d: Sample 1; ¢: Sample 3

J
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Fig. 6 Relative abundances of dominant and common foraminifer species or groups of foraminifer species in the Babczyn 2 borehole interval
studied (above) and corresponding palynofacies changes (below). AOM = Amorphous organic matter

5 Interpretation

The presence of marine palynomorphs (dinoflagellate
cysts) and foraminifera suggests a marine environment
during deposition of the interval in question. Interest-
ingly, the material contains very rare Leiosphaeridia, a
prasinophycean genus (see e.g. Guy-Ohlson 1996) that
commonly occurs in the Miocene of the Carpathian
Foredeep, accumulated in stress environments associated
with increased salinity (e.g. Gedl 2016). Moreover, the
dinoflagellate cyst assemblages lack Polysphaeridium, an-
other indicator of increased (e.g. Bradford and Wall
1984) or decreased salinity (Edwards and Andrle 1992).

Frequent occurrence of this genus was reported from
strata that followed the middle Miocene Badenian
Salinity Crisis (e.g. Gedl and Peryt 2011; Peryt et al
2014; Gedl 2016; Gedl et al. 2016). Preceding strata, in
contrast, yielded no Polysphaeridium or rare specimens
of this genus (e.g. Peryt and Gedl 2010).

Dominant taxa in the benthic foraminiferal assem-
blages of the interval, ie. Nonion parvus, Haynesina
depressula and Ammonia spp., represent shallow infaun-
ally living species, preferring muddy or clayey substrate
for thriving, tolerant of suboxic environments, brackish
to normal marine salinity, and inner shelf depths
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Fig. 7 Dinoflagellate cysts from the Babczyn 2 borehole (scale bar in a refers to all other photomicrographs; photo by P. Gedl). a
Reticulatosphaera actinocoronata; b Labirynthodinium truncatum; ¢ Labirynthodinium truncatum; d, e Labirynthodinium truncatum (same specimen,
various foci); f, g Lejeunecysta sp. (same specimen, various foci); h, i Lejeunecysta sp. (same specimen, various foci); j Lejeunecysta sp.; k-m
Melitasphaeridium choanophorum (same specimen, various foci); n Melitasphaeridium?pseudorecurvatum; o Melitasphaeridium?pseudorecurvatum; p
Melitasphaeridium?pseudorecurvatum; q, r Melitasphaeridium?pseudorecurvatum (same specimen, various foci), s Impagidinium?aculeatum; t
Impagidinium?aculeatum; u, v Nematosphaeropsis sp. (same specimen, various foci); w, x Operculodinium? sp. (same specimen, various foci); y
Melitasphaeridium choanophorum; z Pyxidinopsis psilata; za Pyxidinopsis psilata; zb, zc Pyxidinopsis psilata (same specimen, various foci); zd Gen. et
spec. Indet. a: Sample 7; b, d, e, s, y: Sample 1; ¢, j: Sample 4; f, g: Sample 5; h, i, n, 0, u, v, z, zb-zd: Sample 3; k-m, t: Sample 6; p-r, w, X, za:
Sample 2
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Fig. 8 Dinoflagellate cysts from the Babczyn 2 borehole (scale bar in a refers to all other photomicrographs; photo by P. Gedl). a, b
Operculodinium centrocarpum (same specimen, various foci); ¢, d Operculodinium sp. A, intermediate form to O. sp. B (same specimen, various
foci); e Operculodinium centrocarpum, large morphotype with relatively short and sparse processes; f, g Operculodinium sp. A (same specimen,
various foci); h Operculodinium sp. B; i Operculodinium sp. B; j Operculodinium centrocarpum; k-m Spiniferites pseudofurcatus (same specimen,
various foci); n Operculodinium centrocarpum; o, t Operculodinium centrocarpum, large morphotype with relatively short and sparse processes
(same specimen, various foci); p-r Spiniferites sp., morphotype with high parasutural ridges (same specimen, various foci; s Operculodinium
centrocarpum, small morphotype with smooth cyst wall; u-w Systematophora placacantha (same specimen, various foci); x, y Systematophora
placacantha, morphotype with reduced proximal ridges, similar to S. ancyrea (same specimen, various foci); z-zb Systematophora placacantha
(same specimen, various foci); zc, zd Systematophora placacantha (same specimen, various foci). a, b, k-m, p-r: Sample 7; c-e, j: Sample 6; f, g, x,
y: Sample 4; h, i, n: Sample 2; o, t, z-zd: Sample 3; s: Sample 1; u-w: Sample 5
.
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Fig. 9 Dinoflagellate cysts from the Babczyn 2 borehole (scale bar in a refers to all other photomicrographs; photo by P. Gedl). a, b Pentadinium
sp., species with reduced periphragmal ridges (same specimen, various foci); ¢, d Pentadinium sp. (same specimen, various foci); e Pentadinium sp.;
f-h Pyxidinopsis? sp., large species devoid of any parasutural features except for 1P archaeopyle (same specimen, various foci); i, j Pyxidinopsis? sp.
(same specimen, various foci); k Lingulodinium machaerophorum; | Spiniferites sp., species with thick, spongy cyst wall;, m Spiniferites sp.,; n, o
Spiniferites sp., species with thick, spongy cyst wall (same specimen, various foci); p, q Lingulodinium machaerophorum, specimen with 5P
archaeople (same specimen, various foci); r Spiniferites ramosus; s, t Hystrichokolpoma sp. (same specimen, various foci); u Spiniferites ramosus; v—x
Hystrichosphaeropsis obscura, specimen with granular endophragm, and periphragm bearing small, irregularly distributed spines on hypocyst
(same specimen, various foci); y Hystrichokolpoma sp, z Achomosphaera sp.,; za Lingulodinium machaerophorum; zb-zd Systematophora
placacantha, complete specimen with operculum, disruption suture visible in zd (same specimen, various foci); ze, zf Pentadinium laticinctum
(same specimen, various foci). a-d, z: Sample 6; e: Sample 5; f-I: Sample 3; m-q, s-u, za: Sample 4; r, v—y: Sample 1; zb-zf: Sample 2
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Table 2 Distribution of dinoflagellate cysts and acritarchs (asterisked are reworked species). x

count. Total count includes taxa presumed to be in situ only
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and Murray 1999). Elphidium spp., Rosalina obtusa and
hauerinids, common in the material, are epifaunally liv-
ing species preferring well-oxygenated environments
(Langer 1993; Hayward et al. 1997; Alve and Murray
1999). Deep infaunally living foraminifers, indicators of
dysoxic environments, are not recorded in the material.

Taxonomically impoverished foraminiferal assem-
blages, dominated by a few species with very small sizes,
indicate adverse environmental conditions (e.g. Bernard
1986; Murray 1991, 2006; Sen Gupta and Machain-
Castillo 1993; Hayward et al. 1997).

Nonionids, represented in the material by Nonion par-
vus and Haynesina depressula, are infaunal organisms,
widespread in marginal marine environments, common
in sediments with highly variable mud and total organic
carbon (TOC) contents (Murray 1968, 2006; Alve and
Murray 1999; Vanicek et al. 2000). Haynesina tolerates
lower salinity (0—30%o), while Nonion prefers normal
marine salinity (Murray 1991). Ammonia, an opportunis-
tic genus widespread in marginal marine environments
worldwide (Walton and Sloan 1990; Murray 1991,
2006; Buzas-Stephens et al. 2003), is common in sedi-
ments with highly variable mud and TOC contents
and able to tolerate low oxygen for several days
(Moodley and Hess 1992; Murray 2006). The genus is
represented, in the material, by A. parkinsoniana and
A. tepida with common transitional forms. Their en-
vironmental requirements are quite well-recognized,
which enables to interpret environmental changes.
The two species — common to abundant in the fora-
miniferal assemblages — are well adapted to salinity-
stressed conditions (Fiorini 2004).

Assemblages dominated by the two species are charac-
teristic of environments strongly influenced by fluvial

shelves, benefited from a noticeable input of riverine
phytodetritus to the sediment and the most tolerant for
high organic matter supply (Debeney et al. 2009). The
significant changes in relative abundance in the Ammo-
nia spp. group throughout the interval may indicate
changes in salinity and oxygenation of bottom waters.

The benthic foraminiferal assemblages in the inter-
val are dominated by a few infaunal species preferring
muddy or clayey substrate for living, brackish to nor-
mal marine salinity, and inner shelf depths. Plank-
tonic foraminifera recorded in the material are
indicators of shallow and cool water (Bicchi et al.
2003). However, their scarcity in the material studied
may indicate that they did not live there but they
were transported by waves from deeper part of the
sea. Shallow, cool water with slightly lowered oxygen-
ation at the bottom and a slightly hyposaline to nor-
mal salinity marine environment is thus concluded
for the foraminiferal assemblage from the marly inter-
calation in the Badenian gypsum.

No indications of salinity fluctuations have been re-
corded throughout the interval. Although the predomin-
ance of terrestrial elements in the composition of
dinoflagellate cysts points to an intense influx from
neighbouring land, pollen grains could be airborne.
Higher proportions of cuticles (samples from the upper
part of succession), especially large-sized, can be associ-
ated with source proximity and/or increased intensity of
terrestrial input. However, freshwater algae occur in
none of these samples. Lack of peridinioids commonly
associated with nutrient-rich estuarian or upwelling en-
vironments additionally excludes freshwater input and
points rather at oligotrophic conditions in the water
column (photic zone).
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6 Discussion

As the Badenian evaporite basin was located in a depres-
sion in which the brine top level occurred below the
contemporaneous sea level, it could be subject to rapid
flooding when the sea level rose or when the physical
barrier blocking this basin from the Tethys/Paratethys
reservoir was temporarily removed (Peryt 2006). The
connection of the Carpathian Foredeep Basin with the
marine reservoir was short-lived. After such environ-
mental change, benthic foraminifers started to colonize a
new, previously defaunated niche, and the pattern of
benthic foraminiferal colonization is similar in each case
to that related to the reflooding terminating the Bade-
nian Salinity Crisis (cf. Szczechura 2000; Peryt and Peryt
2009; Gedl and Peryt 2011). This refers in particular to
the poorly diversified, small and strongly abraded foram-
inifera occurring just above the gypsum in the Jamnica
S-119 borehole section (located some 100 km WNW of
the Babczyn 2 borehole) and described by Szczechura
(2000). She concluded that a dominance of infaunal ele-
ments in the assemblage, as well as the state of preserva-
tion of the tests and their low diversity, indicates
oxygen-deficient conditions and/or insufficient CaCOs;
saturation. Peryt et al. (2004) recorded an impoverished
foraminiferal assemblage dominated by Nonion and
Haynesina from siliciclastic deposits, overlying gypsum
deposits, of the Ptashkino section (East Crimea,
Ukraine). They interpreted this assemblage as typical for
a shallow water marsh or lagoon environment with a de-
creased salinity. Thus, it seems that the foraminiferal as-
semblage of the Babczyn 2 borehole represents a typical
late Badenian pioneer, colonizing assemblage. Palynofa-
cies and dinocysts from Jamnica S-119 borehole (Gedl
1999) and Babczyn 2 borehole also show similarities. In
Jamnica S-119 borehole, continental elements dominate
the assemblages coming from the lower part, and marine
elements (dinocysts) start to be more common above it.
The dinocysts assemblages are also similar in both sec-
tions — they are characterized by lack of Polysphaeri-
dium. Leiosphaeridia appears in Jamnica S-119 borehole
in the sample from the depth interval of 257-258 m, but
its more common occurrence was noted in the sample
from the depth of 255-256 m (Gedl 1999), which is a
counterpart of samples from the upper part of the Babc-
zyn 2 borehole clay intercalation in gypsum.

The marly clay intercalation of the Babczyn 2 borehole
intercalation, containing crushed mollusc (Modiolus?)
shell fragments, was previously interpreted by Sliwirniski
et al. (2012) as karst cavity infilling. The middle Miocene
karstification of Badenian gypsum deposits of the Carpa-
thian Foredeep occurred in two phases: soon after gyp-
sum deposition and then after deposition of the lower
series of the Pecten clays with Neobulimina longa (see
Osmdlski 1976, with references therein). However, there
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is no proof that the marly clays in the uppermost part of
the gypsum sequence of the Babczyn 2 borehole repre-
sent karst cavity infilling. The composition of the micro-
palaeontological assemblages differs both from those
recorded in the strata overlying gypsum deposits at
Shchyrets (Peryt et al. 2014) and from the assemblages
of the Pecten beds in the Babczyn 2 borehole.

It remains enigmatic, however, why no such intercala-
tions of marine clays have been reported from elsewhere.
One possible explanation is that the upper parts of the
gypsum sequence have been eroded prior to the onset of
deposition of the Late Badenian Ratyn Limestone and/or
marine clays. In the final stages of the Badenian Salinity
Crisis, gypsum beds that previously accumulated along
the basin margins became then exposed, leading to
reworking of clastic gypsum into the deeper basin
(Kasprzyk 1993; Peryt 1996, 2000; de Leeuw et al. 2018).
As the result, the marine facies of the Ratyn Limestone
in western Ukraine overlies various gypsum units (even
the equivalent of unit ‘¢’ in southern Poland — see Peryt
1996: Fig. 4). Consequently, it is probable that the inter-
calations of marine clays escaped from the erosion in
few cases only (e.g., clays deposited in local depressions).
In addition, the Pecten Beds bear intercalations of clastic
gypsum and this indicates a partial erosion of the
marginal gypsum before and during deposition of these
strata (Sliwinski et al. 2012).

7 Implications

The marine salina model is successfully applied for
the Fore-Carpathian Basin (Peryt 2001, 2006, 2013b;
Babel 2004, 2007; Cenddén et al. 2004). It assumes
that the Badenian evaporite basin was located in a de-
pression in which the brine top level occurred below
the contemporaneous sea level, and it was supplied
with seawater seeping through a barrier that separated
the basin from the sea or overflowing it occasionally
in the form of short-lived marine transgressions. Con-
sequently, it was in fact a saline lake supplied with
marine water (Babel 2007) as far as the Polish and
Ukrainian parts of the basin are concerned. Sediment-
ary history of the Badenian gypsum suggests two
major salinity rises (and hence two saline cyclothems
were recognized in the Carpathian Foredeep Basin — see
Babel 1999b, with references therein) and several marine
influxes causing partial reworking and/or dissolution of
pre-existing gypsum (Kasprzyk 1999, with discussion
therein).

As discussed by de Leeuw et al. (2018), global sea-
level generally remained low during the Badenian Sal-
inity Crisis although some of the modelled short-term
global highstands may have temporarily increased the
connectivity of the Central Paratethys with the global
ocean, leading to a decrease in its salinity as indicated
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by the short-lived return of normal marine foramin-
ifera in the Borkéw section (Peryt 2013a). Accord-
ingly, during eustatic sea-level rise or tectonically
triggered modification of the barrier between the
open sea and the Carpathian Foredeep Basin, new
marine water could enter this depression and bring
with it a temporary pulse of marine fauna (Peryt
2001). However, this not necessarily led to the origin
of microfauna-bearing strata, as described by Peryt
(2013a) and in this paper, or to thin discontinuous
lenticular limestone characterized by Peryt (2001),
which is equivalent to unit ‘h’ in southern Poland
(Kasprzyk 1993) and the marker bed 2 in western
Ukraine (Peryt 2001). The unit clearly indicates con-
siderable brine dilution and is mostly developed as
clastic, laminated and redeposited gypsum forming an
intercalation within a sabre gypsum unit. In western
Ukraine the intercalation is passing shoreward into
thin lenticular marine limestone indicating that this
brine-dilution was not triggered by a climatically con-
trolled influx of meteoric waters which have earlier
caused the basinwide changes in salinity in most of
the Carpathian Foredeep Basin, making possible the
successful ~application of the event-stratigraphy
methods (Babel 1999a, 1999b, 2005; Babel and
Bogucki 2007; Peryt 2001, 2006). On the other hand,
given the size of the Carpathian Foredeep Basin that
is the largest European foredeep basin (see Oszczypko
et al. 2006), no wonder that there are differences in
the development of the gypsum facies between the
western and eastern parts of the foredeep (Peryt et al.
1997; Peryt 2013b; Wysocka et al. 2016). In the west-
ernmost part of the Badenian evaporite basin, in Mor-
avia, clay intercalations and large pore structures
between the selenite crystals occur (Peryt et al. 1997).
The majority of the Moravian gypsum sequence is
interpreted as originated in deeper, density-stratified
waters, with a seawater layer present, as evidenced by
the occurrence of an assemblage of Serravalian plank-
tonic foraminifers in many parts of the gypsum se-
quence (Peryt et al. 1997: Fig. 7). The water
circulation pattern in the Badenian evaporite basin of
the Central Paratethys was quite complex: antiestuar-
ine brine circulation is assumed for the Early and
mid-Badenian (Baldi 2006), including the time interval
of evaporite deposition (Babel and Becker 2006). In
the Late Badenian, a reversal of circulation to estuar-
ine type occurred (Béaldi 2006). Relatively common
microfossils found in clay intercalations within gyp-
sum along the northern Carpathian Foredeep, in par-
ticular in Moravia, strongly suggest that there existed,
as compared to the current reconstruction, an add-
itional inflow channel. This channel was supplying
the Polish Carpathian Basin from the south during
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the evaporite deposition and probably in the 300 kyr
following, during the generally low global sea-level
(de Leeuw et al. 2018).

8 Conclusions

1) Short-lived temporary connections between the
Central Paratethys and the Mediterranean existed
during the middle Miocene Badenian Salinity Crisis.

2) This was facilitated by the palaeogeographical
context, in particular by the location of the Badenian
evaporite basin below the contemporaneous sea-level,
and by the geotectonical context.

3) One of such connections left behind marine
microfossils in a marly clay intercalation in the
uppermost part of the gypsum sequence in SE
Poland.

4) Both foraminiferal and dinoflagellate assemblages
indicate brackish to normal marine salinity at inner
shelf  depths; however, dinoflagellate  cyst
assemblages that tolerate increased salinity are
missing.

5) Marine palynomorphs (dinoflagellate cysts) and
foraminiferal assemblages indicate a marine
depositional environment of marly clay intercalation
within gypsum sequence.

6) At the same time they strongly suggest that there
existed additional, compared to the assumed so far,
channels for marine organisms migration.
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