Adachi, N., Y. Asada, Y. Ezaki, and J.B. Liu. 2017. Stromatolites near the Permian–Triassic boundary in Chongyang, Hubei Province, South China: A geobiological window into palaeo-oceanic fluctuations following the end-Permian extinction. Palaeogeography, Palaeoclimatology, Palaeoecology 475: 55–69. https://doi.org/10.1016/j.palaeo.2017.01.030.
Article
Google Scholar
Arp, G., A. Reimer, and J. Reitner. 2001. Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans. Science 292 (5522): 1701–1704. https://doi.org/10.1126/science.1057204.
Article
Google Scholar
Bagherpour, B., H. Bucher, A. Baud, M. Brosse, T. Vennemann, R. Martini, and K. Guodun. 2017. Onset, development, and cessation of basal Early Triassic microbialites (BETM) in the Nanpanjiang pull-apart basin, South China Block. Gondwana Research 44: 178–204. https://doi.org/10.1016/j.gr.2016.11.013.
Baresel, B., H. Bucher, B. Bagherpour, M. Brosse, G.D. Kuang, and U. Schaltegger. 2017. Timing of global regression and microbial bloom linked with the Permian–Triassic boundary mass extinction: Implications for driving mechanisms. Scientific Reports 7 (1): 43630. https://doi.org/10.1038/srep43630.
Article
Google Scholar
Baud, A., S. Richoz, and S. Pruss. 2007. The lower Triassic anachronistic carbonate facies in space and time. Global and Planetary Change 55 (1–3): 81–89. https://doi.org/10.1016/j.gloplacha.2006.06.008.
Article
Google Scholar
Chagas, A.A.P., G.E. Webb, R.V. Burne, and G. Southam. 2016. Modern lacustrine microbialites: Towards a synthesis of aqueous and carbonate geochemistry and mineralogy. Earth-Science Reviews 162: 338–363. https://doi.org/10.1016/j.earscirev.2016.09.012.
Article
Google Scholar
Chatalov, A. 2017. Anachronistic and unusual carbonate facies in uppermost lower Triassic rocks of the western Balkanides, Bulgaria. Facies 63 (4): 24. https://doi.org/https://doi.org/10.1007/s10347-017-0505-0.
Dupraz, C., R.P. Reid, O. Braissant, A.W. Decho, R.S. Norman, and P.T. Visscher. 2009. Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews 96 (3): 141–162. https://doi.org/10.1016/j.earscirev.2008.10.005.
Article
Google Scholar
Erwin, D.H. 2006. Extinction: How life on earth nearly ended 250 million years ago. Princeton: Princeton University Press.
Google Scholar
Ezaki, Y., J.B. Liu, T. Nagano, and N. Adachi. 2008. Geobiological aspects of the earliest Triassic microbialites along the southern periphery of the tropical Yangtze platform: Initiation and cessation of a microbial regime. Palaios 23 (6): 356–369. https://doi.org/10.2110/palo.2007.p07-035r.
Article
Google Scholar
Fang, Y.H., Z.Q. Chen, S. Kershaw, H. Yang, and M. Luo. 2017. Permian–Triassic boundary microbialites at Zuodeng section, Guangxi Province, South China: Geobiology and palaeoceanographic implications. Global and Planetary Change 152: 115–128. https://doi.org/10.1016/j.gloplacha.2017.02.011.
Article
Google Scholar
Feng, Z.Z., Y.Q. Yang, Z.K. Jin, Y.B. He, S.H. Wu, W.J. Xin, Z.D. Bao, and J. Tan. 1996. Lithofacies paleogeography of the Permian of South China. Acta Sedimentologica Sinica 14 (2): 1–11 (in Chinese with English abstract).
Google Scholar
Foster, W.J., K. Heindel, S. Richoz, J. Gliwa, D.J. Lehrmann, A. Baud, T. Kolar-Jurkovšek, D. Aljinović, B. Jurkovšek, D. Korn, R.C. Martindale, and J. Peckmann. 2020. Suppressed competitive exclusion enabled the proliferation of Permian/Triassic boundary microbialites. The Depositional Record 6 (1): 62–74. https://doi.org/10.1002/dep2.97.
Article
Google Scholar
Friesenbichler, E., S. Richoz, A. Baud, L. Krystyn, L. Sahakyan, S. Vardanyan, J. Peckmann, J. Reitner, and K. Heindel. 2018. Sponge-microbial build-ups from the lowermost Triassic Chanakhchi section in southern Armenia: Microfacies and stable carbon isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology 490: 653–672. https://doi.org/10.1016/j.palaeo.2017.11.056.
Article
Google Scholar
Harwood, C.L. 2013. Microbial and Metazoan Influences on Microbialite Growth Structures: Insights from Recent Lacustrine Microbialites in Pavilion Lake, BC, and Cambrian Thrombolites from the Great Basin, CA and NV [Ph.D. Thesis], 339. Davis: University of California.
Google Scholar
Heydari, E., and J. Hassanzadeh. 2003. Deev Jahi model of the Permian–Triassic boundary mass extinction: A case for gas hydrates as the main cause of biological crisis on earth. Sedimentary Geology 163 (1–2): 147–163. https://doi.org/10.1016/j.sedgeo.2003.08.002.
Article
Google Scholar
Huang, Y.F., D.P.G. Bond, Wang, Y.B, T. Wang, Yi, Z.X, A.H. Yuan, Jia, J.Y, and Y.Q. Su. 2019. Early Triassic microbialites from the Changxing region of Zhejiang Province, South China. Journal of Palaeogeography 8 (3): 225–237. https://doi.org/https://doi.org/10.1186/s42501-019-0039-1.
Kershaw, S. 2017. Palaeogeographic variation in the Permian–Triassic boundary microbialites: A discussion of microbial and ocean processes after the end-Permian mass extinction. Journal of Palaeogeography 6 (2): 97–107. https://doi.org/10.1016/j.jop.2016.12.002.
Article
Google Scholar
Kershaw, S., S. Crasquin, Y. Li, P.Y. Collin, M.B. Forel, X.N. Mu, A. Baud, Y. Wang, S. Xie, F. Maurer, and L. Guo. 2012. Microbialites and global environmental change across the Permian–Triassic boundary: A synthesis. Geobiology 10 (1): 25–47. https://doi.org/10.1111/j.1472-4669.2011.00302.x.
Article
Google Scholar
Kershaw, S., T.S. Zhang, and G.Z. Lan. 1999. A ?Microbialite carbonate crust at the Permian–Triassic boundary in South China, and its palaeoenvironmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology 146 (1-4): 1–18. https://doi.org/10.1016/S0031-0182(98)00139-4.
Article
Google Scholar
Knoll, A.H., R.K. Bambach, D.E. Canfield, and J.P. Grotzinger. 1996. Comparative earth history and late Permian mass extinction. Science 273 (5274): 452–457. https://doi.org/10.1126/science.273.5274.452.
Article
Google Scholar
Kremer, B., J. Kazmierczak, M. Łukomska-Kowalczyk, and S. Kempe. 2012. Calcification and silicification: Fossilization potential of cyanobacteria from stromatolites of Niuafo'ou's Caldera Lakes (Tonga) and implications for the early fossil record. Astrobiology 12 (6): 535–548. https://doi.org/10.1089/ast.2011.0742.
Article
Google Scholar
Lehrmann, D.J., J.M. Bentz, T. Wood, A. Goers, R. Dhillon, S. Akin, X. Li, J.L. Payne, B.M. Kelley, K.M. Meyer, E.K. Schaal, M.B. Suarez, M. Yu, Y. Qin, R. Li, M. Minzoni, and C.M. Henderson. 2015. Environmental controls on the genesis of marine microbialites and dissolution surface associated with the end-Permian mass extinction: New sections and observations from the Nanpanjiang Basin, South China. Palaios 30 (7): 529–552. https://doi.org/10.2110/palo.2014.088.
Article
Google Scholar
Mu, X.N., S. Kershaw, Y. Li, L. Guo, Y.P. Qi, and A. Reynolds. 2009. High-resolution carbon isotope changes in the Permian–Triassic boundary interval, Chongqing, South China; implications for control and growth of earliest Triassic microbialites. Journal of Asian Earth Sciences 36 (6): 434–441. https://doi.org/10.1016/j.jseaes.2007.08.004.
Article
Google Scholar
O'Leary, M.H. 1988. Carbon isotopes in photosynthesis: Fractionation techniques may reveal new aspects of carbon dynamics in plants. BioScience 38 (5): 328–336. https://doi.org/10.2307/1310735.
Article
Google Scholar
Pruss, S.B., and D.J. Bottjer. 2004. Early Triassic trace fossils of the western United States and their implications for prolonged environmental stress from the end-Permian mass extinction. Palaios 19 (6): 551–564. https://doi.org/10.1669/0883-1351(2004)019<0551:ETTFOT>2.0.CO;2.
Riding, R. 2006. Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time. Sedimentary Geology 185 (3–4): 229–238. https://doi.org/10.1016/j.sedgeo.2005.12.015.
Article
Google Scholar
Wang, T., R.V. Burne, A.H. Yuan, Y.B. Wang, and Z.X. Yi. 2019. The evolution of microbialite forms during the Early Triassic transgression: A case study in Chongyang of Hubei Province, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 519: 209–220. https://doi.org/10.1016/j.palaeo.2018.01.043.
Woods, A.D. 2014. Assessing Early Triassic paleoceanographic conditions via unusual sedimentary fabrics and features. Earth-Science Reviews 137: 6–18. https://doi.org/10.1016/j.earscirev.2013.08.015.
Woods, A.D., D.J. Bottjer, M. Mutti, and J. Morrison. 1999. Lower Triassic large sea-floor carbonate cements: Their origin and a mechanism for the prolonged biotic recovery from the end-Permian mass extinction. Geology 27 (7): 645–648. https://doi.org/10.1130/0091-7613(1999)027<0645:LTLSFC>2.3.CO;2.
Wu, S.Q., Z.Q. Chen, Y.H. Fang, Y. Pei, H. Yang, and J. Ogg. 2017. A Permian–Triassic boundary microbialite deposit from the eastern Yangtze platform (Jiangxi Province, South China): Geobiologic features, ecosystem composition and redox conditions. Palaeogeography, Palaeoclimatology, Palaeoecology 486: 58–73. https://doi.org/10.1016/j.palaeo.2017.05.015.
Article
Google Scholar
Wu, Y.S., H.X. Jiang, G.L. Yu, and L.J. Liu. 2018. Conceptions of microbialites and origin of the Permian–Triassic boundary microbialites from Laolongdong, Chongqing, China. Journal of Palaeogeography (Chinese Edition) 20 (5): 737–775 (in Chinese with English abstract).
Google Scholar
Yin, H.F., H.S. Jiang, Xia, W.C, Q.L. Feng, Zhang, N, and J. Shen. 2014. The end-Permian regression in South China and its implication on mass extinction. Earth-Science Reviews 137 (supplement C): 19–33.
Zhang, X.Y., Q.F. Zheng, Li, Y, H.Q. Yang, Zhang, H, W.Q. Wang, and Shen, S.Z. 2020. Polybessurus-like fossils as key contributors to Permian–Triassic boundary microbialites in South China. Palaeogeography, Palaeoclimatology, Palaeoecology 552: 109770. https://doi.org/https://doi.org/10.1016/j.palaeo.2020.109770.