Aitken, J.D. 1967. Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta. Journal of Sedimentary Petrology 37 (4): 1163–1178. https://doi.org/10.1306/74D7185C-2B21-11D7-8648000102C1865D.
Article
Google Scholar
Altermann, W., J. Kazmierczak, A. Oren, and D.T. Wright. 2006. Cyanobacterial calcification and its rock-building potential during 3.5 billion years of Earth history. Geobiology 4 (3): 147–166. https://doi.org/10.1111/j.1472-4669.2006.00076.x.
Arp, G., G. Helms, K. Karlinska, G. Schumann, A. Reimer, J. Reitner, and J. Trichet. 2012. Photosynthesis versus exopolymer degradation in the formation of microbialites on the atoll of Kiritimati, Republic of Kiribati, Central Pacific. Geomicrobiology Journal 29 (1): 29–65. https://doi.org/10.1080/01490451.2010.521436.
Article
Google Scholar
Arp, G., A. Reimer, and J. Reitner. 2001. Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans. Science 292 (5522): 1701–1704. https://doi.org/10.1126/science.1057204.
Article
Google Scholar
Bai, Y., P. Luo, S. Wang, C.M. Zhou, X.F. Zhai, S. Wang, and Z.Y. Yang. 2017. Structure characteristics and major controlling factors of platform margin microbial reef reservoirs: A case study of Xiaoerbulak formation, lower Cambrian, Aksu area, Tarim Basin, NW China. Petroleum Exploration and Development 44 (3): 377–386. https://doi.org/10.1016/S1876-3804(17)30044-7.
Article
Google Scholar
Bosscher, H., and W. Schlager. 1993. Accumulation rates of carbonate platforms. The Journal of Geology 101 (3): 345–355. https://doi.org/10.1086/648228.
Article
Google Scholar
Bundeleva, I.A., L.S. Shirokova, O.S. Pokrovsky, P. Bénézeth, B. Ménez, E. Gérard, and S. Balor. 2014. Experimental modeling of calcium carbonate precipitation by cyanobacterium Gloeocapsa sp. Chemical Geology 374–375: 44–60. https://doi.org/10.1016/j.chemgeo.2014.03.007.
Article
Google Scholar
Burne, R.V., and L.S. Moore. 1987. Microbialites: Organosedimentary deposits of benthic microbial communities. Palaios 2 (3): 241–254. https://doi.org/10.2307/3514674.
Article
Google Scholar
Chen, J.T., J. Lee, and J. Woo. 2014. Formative mechanisms, depositional processes, and geological implications of Furongian (Late Cambrian) reefs in the North China platform. Palaeogeography, Palaeoclimatology, Palaeoecology 414: 246–259. https://doi.org/10.1016/j.palaeo.2014.09.004.
Chen, M., C.T. Xiao, J. Cheng, X.L. Hu, and D.Q. Sun. 2018. Sedimentary characteristics of stromatolites in Cambrian strata in Songzi Liujiachang area and its paleoenvironmental significance. Open Journal of Yangtze Oil and Gas 3 (2): 79–92. https://doi.org/10.4236/ojogas.2018.32007.
Article
Google Scholar
Couradeau, E., K. Benzerara, E. Gérard, D. Moreira, S. Bernard, G.J. Brown, and P. López-García. 2012. An early-branching microbialite cyanobacterium forms intracellular carbonates. Science 336 (6080): 459–462. https://doi.org/10.1126/science.1216171.
Article
Google Scholar
Deng, S.B., P. Guan, B.H. Li, P.X. Liu, and Y.Q. Chen. 2018. Sedimentary texture and formation process of the Lower Cambrian platform marginal zone in the Tarim Basin, NW China. Acta Sedimentologica Sinica 36 (4): 706–721. https://doi.org/10.14027/j.issn.1000-0550.2018.059 (in Chinese with English abstract).
Dupraz, C., R. Pamela Reid, O. Braissant, A.W. Decho, R.S. Norman, and P.T. Visscher. 2009. Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews 96 (3): 141–162. https://doi.org/10.1016/j.earscirev.2008.10.005.
Article
Google Scholar
Dupraz, C., and A. Strasser. 1999. Microbialites and micro-encrusters in shallow coral bioherms (middle to late Oxfordian, Swiss Jura Mountains). Facies 40 (1): 101–129. https://doi.org/10.1007/BF02537471.
Article
Google Scholar
Ezaki, Y., J.B. Liu, and N. Adachi. 2003. Earliest Triassic microbialite micro- to megastructures in the Huaying area of Sichuan Province, South China: Implications for the nature of oceanic conditions after the end-Permian extinction. Palaios 18 (4–5): 388–402. https://doi.org/10.1669/0883-1351(2003)018<0388:ETMMTM>2.0.CO;2.
Article
Google Scholar
Ezaki, Y., J.B. Liu, N. Adachi, and Z. Yan. 2017. Microbialite development during the protracted inhibition of skeletal-dominated reefs in the Zhangxia Formation (Cambrian Series 3) in Shandong Province, North China. Palaios 32 (9): 559–571. https://doi.org/10.2110/palo.2016.097.
Ezaki, Y., J.B. Liu, T. Nagano, and N. Adachi. 2008. Geobiological aspects of the earliest Triassic microbialites along the southern periphery of the tropical Yangtze platform: Initiation and cessation of a microbial regime. Palaios 23 (6): 356–369. https://doi.org/10.2110/palo.2007.p07-035r.
Article
Google Scholar
Grotzinger, J., and Z. Al-Rawahi. 2014. Depositional facies and platform architecture of microbialite-dominated carbonate reservoirs, Ediacaran–Cambrian Ara Group, Sultanate of Oman. AAPG Bulletin 98 (8): 1453–1494. https://doi.org/10.1306/02271412063.
Article
Google Scholar
Grotzinger, J.P., and A.H. Knoll. 1999. Stromatolites in Precambrian carbonates: Evolutionary mileposts or environmental dipsticks? Annual Review of Earth and Planetary Sciences 27 (1): 313–358. https://doi.org/10.1146/annurev.earth.27.1.313.
Article
Google Scholar
Han, Z.Z., Y.Y. Zhao, H.X. Yan, H. Zhao, M. Han, B. Sun, R.R. Meng, D.X. Zhuang, D. Li, W.J. Gao, S.Y. Du, X.A. Wang, K.X. Fan, W.Y. Hu, and M.X. Zhang. 2017. The characterization of intracellular and extracellular biomineralization induced by Synechocystis sp. PCC6803 cultured under low Mg/Ca ratios conditions. Geomicrobiology Journal 34 (4): 362–373. https://doi.org/10.1080/01490451.2016.1197986.
Jahnert, R.J., and L.B. Collins. 2011. Significance of subtidal microbial deposits in Shark Bay, Australia. Marine Geology 286 (1-4): 106–111. https://doi.org/10.1016/j.margeo.2011.05.006.
Article
Google Scholar
Jiang, H.X., and Y.S. Wu. 2007. Restudy of the microbialite from the Permian–Triassic boundary section, Chongqing. Acta Petrologica Sinica 23 (5): 1189–1196. https://doi.org/10.3321/j.issn:1000-0569.2007.05.032 (in Chinese with English abstract).
Article
Google Scholar
Kalkowsky, E. 1908. Oolith and stromatolith in norddeutschen Buntsandstein. Zeitschrift der Deutschen Geologischen Gesellschaft 60: 68–125.
Google Scholar
Kaźmierczak, J., T. Fenchel, M. Kühl, S. Kempe, B. Kremer, B. Łącka, and K. Małkowski. 2015. CaCO3 precipitation in multilayered cyanobacterial mats: Clues to explain the alternation of micrite and sparite layers in calcareous stromatolites. Life 5 (1): 744–769. https://doi.org/10.3390/life5010744.
Article
Google Scholar
Kennard, J.M., and N.P. James. 1986. Thrombolites and stromatolites: Two distinct types of microbial structures. Palaios 1 (5): 492–503. https://doi.org/10.2307/3514631.
Article
Google Scholar
Kershaw, S., S. Crasquin, Y. Li, P.Y. Collin, M.B. Forel, X.N. Mu, A. Baud, Y. Wang, S. Xie, F. Maurer, and L. Guo. 2012. Microbialites and global environmental change across the Permian–Triassic boundary: A synthesis. Geobiology 10 (1): 25–47. https://doi.org/10.1111/j.1472-4669.2011.00302.x.
Article
Google Scholar
Kershaw, S., Y. Li, S. Crasquin-Soleau, Q.L. Feng, X.N. Mu, P.Y. Collin, A. Reynolds, and L. Guo. 2007. Earliest Triassic microbialites in the South China block and other areas: Controls on their growth and distribution. Facies 53 (3): 409–425. https://doi.org/10.1007/s10347-007-0105-5.
Article
Google Scholar
Kranz, S.A., D. Wolf-Gladrow, G. Nehrke, G. Langer, and B. Rosta. 2010. Calcium carbonate precipitation induced by the growth of the marine cyanobacteria Trichodesmium. Limnology and Oceanography 55 (6): 2563–2569. https://doi.org/10.4319/lo.2010.55.6.2563.
Lee, J.H., J.T. Chen, S.J. Choh, D.J. Lee, Z.Z. Han, and S.K. Chough. 2014. Furongian (Late Cambrian) sponge–microbial maze-like reefs in the North China platform. Palaios 29 (1): 27–37. https://doi.org/10.2110/palo.2013.050.
Liang, A.Q., C. Paulo, Y. Zhu, and M. Dittrich. 2013. CaCO3 biomineralization on cyanobacterial surfaces: Insights from experiments with three Synechococcus strains. Colloids and Surfaces B: Biointerfaces 111: 600–608. https://doi.org/10.1016/j.colsurfb.2013.07.012.
Article
Google Scholar
Liu, J.B., Y. Ezaki, S.R. Yang, H.F. Wang, and N. Adachi. 2007. Age and sedimentology of microbialites after the end-Permian mass extinction in Luodian, Guizhou Province. Journal of Palaeogeography (Chinese Edition) 9 (5): 473–486. https://doi.org/10.3969/j.issn.1671-1505.2007.05.005 (in Chinese with English abstract).
Article
Google Scholar
Liu, S.G., J.M. Song, P. Luo, H.R. Qing, T. Lin, W. Sun, Z.W. Li, H. Wang, H.L. Peng, Y.Q. Yu, Y. Long, and Y.B. Wan. 2016. Characteristics of microbial carbonate reservoir and its hydrocarbon exploring outlook in the Sichuan Basin, China. Journal of Chengdu University of Technology (Science and Technology Edition) 43 (2): 129–152. https://doi.org/10.3969/j.issn.1671-9727.2016.02.01 (in Chinese with English abstract).
Article
Google Scholar
Lowenstam, H.A., and S. Weiner. 1989. On Biomineralization, 324 pp. New York: Oxford University Press. https://doi.org/10.1093/oso/9780195049770.001.0001.
McConnaughey, T. 1989. Biomineralization mechanisms. In Origin, Evolution, and Modern Aspects of Biomineralization in Plants and Animals, ed. R.E. Crick, pp. 57–73. Boston: Springer. https://doi.org/10.1007/978-1-4757-6114-6_5.
Obst, M., B. Wehrli, and M. Dittrich. 2009. CaCO3 nucleation by cyanobacteria: Laboratory evidence for a passive, surface-induced mechanism. Geobiology 7 (3): 324–347. https://doi.org/10.1111/j.1472-4669.2009.00200.x.
Article
Google Scholar
Patterson, M. 2014. Geomicrobial Investigation of Thrombolites in Green Lake, New York and Highborne Cay, Bahamas [master thesis], pp. 1–133. Connecticut: University of Connecticut.
Planavsky, N., and R.N. Ginsburg. 2009. Taphonomy of modern marine Bahamian microbialites. Palaios 24 (1): 5–17. https://doi.org/10.2110/palo.2008.p08-001r.
Article
Google Scholar
Reid, R.P., N.P. James, I.G. Macintyre, C.P. Dupraz, and R.V. Burne. 2003. Shark Bay stromatolites: Microfabrics and reinterpretation of origins. Facies 49 (1): 299–324. https://doi.org/10.1007/s10347-003-0036-8.
Article
Google Scholar
Reid, R.P., I.G. Macintyre, K.M. Browne, R.S. Steneck, and T. Miller. 1995. Modern marine stromatolites in the Exuma cays, Bahamas: Uncommonly common. Facies 33 (1): 1–17. https://doi.org/10.1007/BF02537442.
Article
Google Scholar
Reid, R.P., I.G. Macintyre, and R.S. Steneck. 1999. A microbialite/algal ridge fringing reef complex, Highborne cay, Bahamas. Atoll Research Bulletin 465: 1–18. https://doi.org/10.5479/si.00775630.465.1.
Article
Google Scholar
Reid, R.P., P.T. Visscher, A.W. Decho, J.F. Stolz, B.M. Bebout, C. Dupraz, I.G. Macintyre, H.W. Paerl, J.L. Pinckney, L. Prufert-Bebout, T.F. Steppe, and D.J. DesMarais. 2000. The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406 (6799): 989–992. https://doi.org/10.1038/35023158.
Article
Google Scholar
Riding, R. 1977. Calcified Plectonema (blue-green algae), a recent example of Girvanella from Aldabra atoll. Palaeontology 20 (1): 33–46.
Google Scholar
Riding, R. 1991. Classification of microbial carbonates. In Calcareous Algae and Stromatolites, ed. R. Riding, pp. 21–51. Berlin: Springer-Verlag. https://doi.org/10.1007/978-3-642-52335-9_2.
Riding, R. 2006. Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic–Cambrian changes in atmospheric composition. Geobiology 4 (4): 299–316. https://doi.org/10.1111/j.1472-4669.2006.00087.x.
Article
Google Scholar
Riding, R. 2011. Microbialites, stromatolites, and thrombolites. In Encyclopedia of Geobiology, Encyclopedia of Earth Science Series, ed. J. Reitner and V. Thiel, pp. 635–654. Heidelberg: Springer. https://doi.org/10.1007/978-1-4020-9212-1_196.
Shapiro, R.S., and S.M. Awramik. 2000. Microbialite morphostratigraphy as a tool for correlating Late Cambrian–Early Ordovician sequences. The Journal of Geology 108 (2): 171–180. https://doi.org/10.1086/314394.
Song, J.M., P. Luo, S.S. Yang, X.F. Zhai, G. Zhou, and P.P. Lu. 2012. Carbonate rock microbial construction of the Lower Cambrian Xiaoerblak Formation in Sugaitblak area, Tarim Basin. Journal of Palaeogeography (Chinese Edition) 14 (3): 341–354 (in Chinese with English abstract).
Suosaari, E.P., R.P. Reid, T.A.A. Araujo, P.E. Playford, D.K. Holley, K.J. McNamara, and G.P. Eberli. 2016. Environmental pressures influencing living stromatolites in Hamelin Pool, Shark Bay, western Australia. Palaios 31 (10): 483–496. https://doi.org/10.2110/palo.2016.023.
Article
Google Scholar
Theisen, C.H., and D.Y. Sumner. 2016. Thrombolite fabrics and origins: Influences of diverse microbial and metazoan processes on Cambrian thrombolite variability in the Great Basin, California and Nevada. Sedimentology 63 (7): 2217–2252. https://doi.org/10.1111/sed.12304.
Article
Google Scholar
Wang, H.F., J.B. Liu, and Y. Ezaki. 2012. Sea-level changes at the Dawen Permian–Triassic boundary section of Luodian, Guizhou Province, South China: A global correlation. Acta Scientiarum Naturalium Universitatis Pekinensis 48 (4): 589–602 (in Chinese with English abstract).
Google Scholar
Wang, J., R.L. Zhuang, K.T. Lao, and G.H. Long. 1990. Division and geological implications of calcareous algal morphological groups and environmental zones in the Lower Cambrian Qingxudong Formation, Huayuan district, western Hunan. Sedimentary Facies and Palaeogeography 10 (3): 9–19 (in Chinese with English abstract).
Wang, M.M., L. Yang, X.Y. Xu, W. Zhang, and L.Q. Wang. 2017. Geitlerinema ionicum — A newly recorded genus and species of Cyanophyta in China. Journal of Shanghai Ocean University 26 (2): 258–262. https://doi.org/10.12024/jsou.20160601805 (in Chinese with English abstract).
Article
Google Scholar
Wang, Y.B., J.N. Tong, J.S. Wang, and X.G. Zhou. 2005. Calcimicrobialite after end-Permian mass extinction in South China and its palaeoenvironmental significance. Chinese Science Bulletin 50 (7): 665–671. https://doi.org/10.1360/982004-323.
Article
Google Scholar
Webb, G.E. 2001. Biologically induced carbonate precipitation in reefs through time. In The History and Sedimentology of Ancient Reef Systems, ed. G.D. Stanley Jr., 159–203. New York: Springer.
Chapter
Google Scholar
Wu, Y.S., H.X. Jiang, G.L. Yu, and L.J. Liu. 2018. Conceptions of microbialites and origin of the Permian–Triassic boundary microbialites from Laolongdong, Chongqing, China. Journal of Palaeogeography (Chinese Edition) 20 (5): 737–775. https://doi.org/10.7605/gdlxb.2018.05.053 (in Chinese with English abstract).
Article
Google Scholar
Wu, Y.S., G.L. Yu, R.H. Li, L.R. Song, H.X. Jiang, R. Riding, L.J. Liu, D.Y. Liu, and R. Zhao. 2014. Cyanobacterial fossils from 252 Ma old microbialites and their environmental significance. Scientific Reports 4 (3820): 1–5.
Wu, Y.Y., T.S. Zhang, J.L. Lü, and Y. Liu. 2017. The sedimentological characteristics of microbialites of the Cambrian in the vicinity of Beijing, China. Journal of Palaeogeography 6 (2): 117–131. https://doi.org/10.1016/j.jop.2017.03.003.
Article
Google Scholar
Yan, H.X., Z.Z. Han, H. Zhao, S.X. Zhou, N.J. Chi, M. Han, X.Y. Kou, Y. Zhang, L.L. Xu, C.C. Tian, and S. Qin. 2014. Characterization of calcium deposition induced by Synechocystis sp. PCC6803 in BG11 culture medium. Chinese Journal of Oceanology and Limnology 32 (3): 503–510. https://doi.org/10.1007/s00343-014-3150-2.
Article
Google Scholar
Yan, Z., J.B. Liu, Y. Ezaki, N. Adachi, and S.X. Du. 2017. Stacking patterns and growth models of multiscopic structures within Cambrian Series 3 thrombolites at the Jiulongshan section, Shandong Province, northern China. Palaeogeography, Palaeoclimatology, Palaeoecology 474: 45–57. https://doi.org/10.1016/j.palaeo.2016.07.009.
Yang, H., S.X. Zhang, H.S. Jiang, and Y.B. Wang. 2006. Age and general characteristics of calcimicrobialite near the Permian–Triassic boundary in Chongyang, Hubei Province. Earth Science - Journal of China University of Geosciences 31 (2): 165–170. https://doi.org/10.3321/j.issn:1000-2383.2006.02.004 (in Chinese with English abstract).
Article
Google Scholar
You, X.L., S. Sun, and J.Q. Zhu. 2014. Significance of fossilized microbes from the Cambrian stromatolites in the Tarim Basin, Northwest China. Science China Earth Sciences 57 (12): 2901–2913. https://doi.org/10.1007/s11430-014-4935-z.
Article
Google Scholar
Zhang, X.L., D.G. Shu, J. Han, Z.F. Zhang, J.N. Liu, and D.J. Fu. 2014. Triggers for the Cambrian explosion: Hypotheses and problems. Gondwana Research 25 (3): 896–909. https://doi.org/10.1016/j.gr.2013.06.001.
Article
Google Scholar
Zheng, J.F., Y.Q. Chen, L.L. Huang, W. Yan, X.F. Ni, B.H. Li, and X.Y. Guo. 2019. Reservoir modeling of the Lower Cambrian Xiaoerblak Formation in the Sugaitblak section and its significance for exploring regions in the Tarim Basin, NW China. Acta Sedimentologica Sinica 37 (3): 601–609 (in Chinese with English abstract).
Zhu, T.T., and M. Dittrich. 2016. Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: A review. Frontiers in Bioengineering and Biotechnology 4: 4. https://doi.org/10.3389/fbioe.2016.00004.
Article
Google Scholar