Bartley, J.K., and L.C. Kah. 2004. Marine carbon reservoir, Corg-Ccarb coupling, and the evolution of the Proterozoic carbon cycle. Geology 32 (2): 129–132.
Article
Google Scholar
Bau, M., and P. Dulski. 1999. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: Implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater. Chemical Geology 155 (1–2): 77–90.
Article
Google Scholar
Bau, M., P. Möller, and P. Dulski. 1997. Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox-cycling. Marine Chemistry 56 (1): 123–131.
Article
Google Scholar
Baumgartner, L.K., R.P. Reid, C. Dupraz, A.W. Decho, D.H. Buckley, J.R. Spear, K.M. Przekop, and P.T. Visscher. 2006. Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries. Sedimentary Geology 185 (3–4): 131–145.
Article
Google Scholar
Brasier, M.D., and J.F. Lindsay. 1998. A billion years of environmental stability and the emergence of eukaryotes: New data from northern Australia. Geology 26 (6): 555–558.
Article
Google Scholar
Byrne, R.H., and E.R. Sholkovitz. 1996. Chapter 158 Marine chemistry and geochemistry of the lanthanides. In Handbook on the Physics and Chemistry of Rare Earths 23, 497–593.
Google Scholar
Canfield, D.E., B.B. Jørgensen, H. Fossing, R. Glud, J. Gundersen, N.B. Ramsing, B. Thamdrup, J.W. Hansen, L.P. Nielsen, and P.O.J. Hall. 1993. Pathways of organic carbon oxidation in three continental margin sediments. Marine Geology 113 (1–2): 27–40.
Article
Google Scholar
Canfield, D.E., and B. Thamdrup. 2009. Towards a consistent classification scheme for geochemical environments, or, why we wish the term 'suboxic' would go away. Geobiology 7 (4): 385–392.
Article
Google Scholar
Cole, D.B., C.T. Reinhard, X.L. Wang, B. Gueguen, G.P. Halverson, T. Gibson, M.S.W. Hodgskiss, N.R. McKenzie, T.W. Lyons, and N.J. Planavsky. 2016. A shale-hosted Cr isotope record of low atmospheric oxygen during the Proterozoic. Geology 44 (7): 555–558. https://doi.org/10.1130/G37787.1.
Article
Google Scholar
Curtis, C.D., M.L. Coleman, and L.G. Love. 1986. Pore water evolution during sediment burial from isotopic and mineral chemistry of calcite, dolomite and siderite concretions. Geochimica et Cosmochimica Acta 50 (10): 2321–2334.
Article
Google Scholar
Dale, A., C.M. John, P.S. Mozley, P.C. Smalley, and A.H. Muggeridge. 2014. Time-capsule concretions: Unlocking burial diagenetic processes in the Mancos Shale using carbonate clumped isotopes. Earth and Planetary Science Letters 394: 30–37.
Article
Google Scholar
Day-Stirrat, R.J., R.G. Loucks, K.L. Milliken, S. Hillier, and B.A. van der Pluijm. 2008. Phyllosilicate orientation demonstrates early timing of compactional stabilization in calcite-cemented concretions in the Barnett Shale (Late Mississippian), Fort Worth Basin, Texas (USA). Sedimentary Geology 208 (1–2): 27–35.
Article
Google Scholar
de Baar, H.J.W., C.R. German, H. Elderfield, and P. van Gaans. 1988. Rare earth element distributions in anoxic waters of the Cariaco Trench. Geochimica et Cosmochimica Acta 52 (5): 1203–1219.
Article
Google Scholar
De Carlo, E.H., and W.J. Green. 2002. Rare earth elements in the water column of Lake Vanda, McMurdo Dry Valleys, Antarctica. Geochimica et Cosmochimica Acta 66 (8): 1323–1333.
Article
Google Scholar
Dong, J., S.H. Zhang, G.Q. Jiang, H.Y. Li, and R. Gao. 2013. Greigite from carbonate concretions of the Ediacaran Doushantuo Formation in South China and its environmental implications. Precambrian Research 225: 77–85.
Article
Google Scholar
Dong, J., S.H. Zhang, G.Q. Jiang, Q.L. Zhao, H.Y. Li, X.Y. Shi, and J.L. Liu. 2008. Early diagenetic growth of carbonate concretions in the upper Doushantuo formation in South China and their significance for the assessment of hydrocarbon source rock. Science in China Series D: Earth Sciences 51 (9): 1330–1339.
Article
Google Scholar
Evans, D.A.D., and R.N. Mitchell. 2011. Assembly and breakup of the core of Paleoproterozoic–Mesoproterozoic supercontinent Nuna. Geology 39 (5): 443–446. https://doi.org/10.1130/G31654.1.
Article
Google Scholar
Feldmann, R.M., A. Franţescu, O.D. Franţescu, A.A. Klompmaker, G. Logan Jr., C.M. Robins, C.E. Schweitzer, and D.A. Waugh. 2012. Formation of lobster-bearing concretions in the Late Cretaceous Bearpaw Shale, Montana, United States, in a complex geochemical environment. Palaios 27 (12): 842–856.
Article
Google Scholar
Fisher, Q.J., R. Raiswell, and J.D. Marshall. 1998. Siderite concretions from nonmarine shales (Westphalian A) of the Pennines, England: Controls on their growth and composition. Journal of Sedimentary Research 68 (5): 1034–1045.
Article
Google Scholar
Gaines, R.R., and J.S. Vorhies. 2016. Growth mechanisms and geochemistry of carbonate concretions from the Cambrian Wheeler Formation (Utah, USA). Sedimentology 63 (3): 662–698.
Article
Google Scholar
German, C.R., and H. Elderfield. 1990. Application of the Ce anomaly as a paleoredox indicator: The ground rules. Paleoceanography 5 (5): 823–833.
Article
Google Scholar
German, C.R., B.P. Holliday, and H. Elderfield. 1991. Redox cycling of rare earth elements in the suboxic zone of the Black Sea. Geochimica et Cosmochimica Acta 55 (12): 3553–3558.
Article
Google Scholar
Guo, H., Y.S. Du, L.C. Kah, J.H. Huang, C.Y. Hu, H. Huang, and W.C. Yu. 2013. Isotopic composition of organic and inorganic carbon from the Mesoproterozoic Jixian Group, North China: Implications for biological and oceanic evolution. Precambrian Research 224: 169–183.
Article
Google Scholar
Gutjahr, M., M. Frank, C.H. Stirling, V. Klemm, T. van de Flierdt, and A.N. Halliday. 2007. Reliable extraction of a deepwater trace metal isotope signal from Fe–Mn oxyhydroxide coatings of marine sediments. Chemical Geology 242 (3–4): 351–370.
Article
Google Scholar
Haley, B.A., G.P. Klinkhammer, and J. McManus. 2004. Rare earth elements in pore waters of marine sediments. Geochimica et Cosmochimica Acta 68 (6): 1265–1279.
Article
Google Scholar
Hendry, J.P., M.J. Pearson, N.H. Trewin, and A.E. Fallick. 2006. Jurassic septarian concretions from NW Scotland record interdependent bacterial, physical and chemical processes of marine mudrock diagenesis. Sedimentology 53 (3): 537–565.
Article
Google Scholar
Huggett, J.M., A.S. Gale, and S. Evans. 2000. Carbonate concretions from the London Clay (Ypresian, Eocene) of southern England and the exceptional preservation of wood-boring communities. Journal of the Geological Society 157: 187–200.
Article
Google Scholar
Johnson, K.S., W.M. Berelson, K.H. Coale, T.L. Coley, V.A. Elrod, W.R. Fairey, H.D. Iams, T.E. Kilgore, and J.L. Nowicki. 1992. Manganese flux from continental margin sediments in a transect through the oxygen minimum. Science 257 (5074): 1242–1245.
Article
Google Scholar
Kah, L.C., T.W. Lyons, and T.D. Frank. 2004. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature 431 (7010): 834–838.
Article
Google Scholar
Kim, J.-H., M.E. Torres, B.A. Haley, M. Kastner, J.W. Pohlman, M. Riedel, and Y.-J. Lee. 2012. The effect of diagenesis and fluid migration on rare earth element distribution in pore fluids of the northern Cascadia accretionary margin. Chemical Geology 291: 152–165.
Article
Google Scholar
Liang, H.M., X. Chen, C.S. Wang, D.K. Zhao, and H. Weissert. 2016. Methane-derived authigenic carbonates of mid-Cretaceous age in southern Tibet: Types of carbonate concretions, carbon sources, and formation processes. Journal of Asian Earth Sciences 115: 153–169.
Article
Google Scholar
Lowenstein, T.K., M.N. Timofeeff, S.T. Brennan, L.A. Hardie, and R.V. Demicco. 2001. Oscillations in Phanerozoic seawater chemistry: Evidence from fluid inclusions. Science 294 (5544): 1086–1088.
Article
Google Scholar
Loyd, S.J., W.M. Berelson, T.W. Lyons, D.E. Hammond, A.K. Tripati, J.M. Eiler, and F.A. Corsetti. 2012. Formation mechanisms of carbonate concretions of the Monterey Formation: Analyses of clumped isotopes, iron, sulfur and carbon. Mineralogical Magazine 76: 2036–2036.
Google Scholar
Loyd, S.J., J.A.D. Dickson, J.R. Boles, and A.K. Tripati. 2014. Clumped-isotope constraints on cement paragenesis in septarian concretions. Journal of Sedimentary Research 84 (12): 1170–1184.
Article
Google Scholar
Luo, Q.Y., N.N. Zhong, Y.N. Wang, L. Ma, and M. Li. 2015. Provenance and paleoweathering reconstruction of the Mesoproterozoic Hongshuizhuang Formation (1.4 Ga), northern North China. International Journal of Earth Sciences 104 (7): 1701–1720.
Article
Google Scholar
Lyons, T.W., C.T. Reinhard, and N.J. Planavsky. 2014. The rise of oxygen in Earth's early ocean and atmosphere. Nature 506 (7488): 307–315.
Article
Google Scholar
McCoy, V.E. 2014. Concretions as agents of soft-tissue preservation: A review. The Paleontological Society Papers 20: 147–162.
Google Scholar
McLennan, S.M. 1989. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry 21 (1): 169–200.
Article
Google Scholar
Meyer, R.L., N. Risgaard-Petersen, and D.E. Allen. 2005. Correlation between anammox activity and microscale distribution of nitrite in a subtropical mangrove sediment. Applied and Environmental Microbiology 71 (10): 6142–6149.
Article
Google Scholar
Mozley, P.S. 1989. Complex compositional zonation in concretionary siderite: Implications for geochemical studies. Journal of Sedimentary Petrology 59 (5): 815–818.
Google Scholar
Mozley, P.S., and S.J. Burns. 1993. Oxygen and carbon isotopic composition of marine carbonate concretions: An overview. Journal of Sedimentary Research 63 (1): 73–83.
Google Scholar
Planavsky, N., A. Bekker, O.J. Rouxel, B. Kamber, A. Hofmann, A. Knudsen, and T.W. Lyons. 2010. Rare earth element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition. Geochimica et Cosmochimica Acta 74 (22): 6387–6405.
Article
Google Scholar
Planavsky, N.J., C.T. Reinhard, X. Wang, D. Thomson, P. McGoldrick, R.H. Rainbird, T. Johnson, W.W. Fischer, and T.W. Lyons. 2014. Low mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science 346 (6209): 635–638.
Article
Google Scholar
Raiswell, R. 1988. Evidence for surface reaction-controlled growth of carbonate concretions in shales. Sedimentology 35 (4): 571–575.
Article
Google Scholar
Raiswell, R., S.H. Bottrell, S.P. Dean, J.D. Marshall, A. Carr, and D. Hatfield. 2002. Isotopic constraints on growth conditions of multiphase calcite–pyrite–barite concretions in Carboniferous mudstones. Sedimentology 49 (2): 237–254.
Article
Google Scholar
Raiswell, R., and Q.J. Fisher. 2000. Mudrock-hosted carbonate concretions: A review of growth mechanisms and their influence on chemical and isotopic composition. Journal of the Geological Society 157: 239–251.
Article
Google Scholar
Raiswell, R., and Q.J. Fisher. 2004. Rates of carbonate cementation associated with sulphate reduction in DSDP/ODP sediments: Implications for the formation of concretions. Chemical Geology 211 (1–2): 71–85.
Article
Google Scholar
Roberts, A.P., and R. Weaver. 2005. Multiple mechanisms of remagnetization involving sedimentary greigite (Fe3S4). Earth and Planetary Science Letters 231 (3–4): 263–277.
Article
Google Scholar
Saager, P.M., H.J.W. De Baar, and P.H. Burkill. 1989. Manganese and iron in Indian Ocean waters. Geochimica et Cosmochimica Acta 53 (9): 2259–2267.
Article
Google Scholar
Sellés-Martínez, J. 1996. Concretion morphology, classification and genesis. Earth-Science Reviews 41 (3–4): 177–210.
Article
Google Scholar
Tang, D.J., X.Y. Shi, G.Q. Jiang, T. Wu, J.B. Ma, and X.Q. Zhou. 2018. Stratiform siderites from the Mesoproterozoic Xiamaling Formation in North China: Genesis and environmental implications. Gondwana Research 58: 1–15.
Article
Google Scholar
Tang, D.J., X.Y. Shi, G.Q. Jiang, X.Q. Zhou, and Q. Shi. 2017. Ferruginous seawater facilitates the transformation of glauconite to chamosite: An example from the Mesoproterozoic Xiamaling Formation of North China. American Mineralogist 102 (11): 2317–2332.
Article
Google Scholar
Tang, D.J., X.Y. Shi, Q. Shi, J.J. Wu, G.Y. Song, and G.Q. Jiang. 2015. Organomineralization in Mesoproterozoic giant ooids. Journal of Asian Earth Sciences 107: 195–211.
Article
Google Scholar
Tang, D.J., X.Y. Shi, X.Q. Wang, and G.Q. Jiang. 2016. Extremely low oxygen concentration in mid-Proterozoic shallow seawaters. Precambrian Research 276: 145–157.
Article
Google Scholar
Thamdrup, B., and D.E. Canfield. 1996. Pathways of carbon oxidation in continental margin sediments off central Chile. Limnology and Oceanography 41 (8): 1629–1650.
Article
Google Scholar
Thamdrup, B., H. Fossing, and B.B. Jørgensen. 1994. Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus bay, Denmark. Geochimica et Cosmochimica Acta 58 (23): 5115–5129.
Article
Google Scholar
Tostevin, R., R.A. Wood, G.A. Shields, S.W. Poulton, R. Guilbaud, F. Bowyer, A.M. Penny, T. He, A. Curtis, K.H. Hoffmann, and M.O. Clarkson. 2016. Low-oxygen waters limited habitable space for early animals. Nature Communications 7: 12818. https://doi.org/10.1038/ncomms12818.
Article
Google Scholar
Trefry, J.H., B.J. Presley, W.L. Keeney-Kennicutt, and R.P. Trocine. 1984. Distribution and chemistry of manganese, iron, and suspended particulates in Orca Basin. Geo-Marine Letters 4 (2): 125–130.
Article
Google Scholar
Turekian, K.K., and K.H. Wedepohl. 1961. Distribution of the elements in some major units of the Earth’s crust. GSA Bulletin 72 (2): 175–192.
Article
Google Scholar
Wang, X.M., S.C. Zhang, H.J. Wang, C.J. Bjerrum, E.U. Hammarlund, E.R. Haxen, J. Su, Y. Wang, and D.E. Canfield. 2017. Oxygen, climate and the chemical evolution of a 1400 million year old tropical marine setting. American Journal of Science 317 (8): 861–900.
Article
Google Scholar
Whiticar, M.J. 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology 161 (1–3): 291–314.
Article
Google Scholar
Zhang, S.C., X.M. Wang, E.U. Hammarlund, H.J. Wang, M.M. Costa, C.J. Bjerrum, J.N. Connelly, B.M. Zhang, L.Z. Bian, and D.E. Canfield. 2015. Orbital forcing of climate 1.4 billion years ago. Proceedings of the National Academy of Sciences of the United States of America 112 (12): E1406–E1413.
Google Scholar
Zhang, S.C., X.M. Wang, H.J. Wang, C.J. Bjerrum, E.U. Hammarlund, M.M. Costa, J.N. Connelly, B.M. Zhang, J. Su, and D.E. Canfield. 2016. Sufficient oxygen for animal respiration 1,400 million years ago. Proceedings of the National Academy of Sciences of the United States of America 113 (7): 1731–1736.
Article
Google Scholar
Zhang, S.C., X.M. Wang, H.J. Wang, E.U. Hammarlund, J. Su, Y. Wang, and D.E. Canfield. 2017a. The oxic degradation of sedimentary organic matter 1400 Ma constrains atmospheric oxygen levels. Biogeosciences 14 (8): 2133–2149.
Article
Google Scholar
Zhang, S.H., Z.X. Li, D.A.D. Evans, H.C. Wu, H.Y. Li, and J. Dong. 2012. Pre-Rodinia supercontinent Nuna shaping up: A global synthesis with new paleomagnetic results from North China. Earth and Planetary Science Letters 353–354: 145–155.
Article
Google Scholar
Zhang, S.H., Y. Zhao, X.H. Li, R.E. Ernst, and Z.Y. Yang. 2017b. The 1.33–1.30 Ga Yanliao large igneous province in the North China Craton: Implications for reconstruction of the Nuna (Columbia) supercontinent, and specifically with the North Australian Craton. Earth and Planetary Science Letters 465: 112–125.
Article
Google Scholar
Zhang, S.H., Y. Zhao, Z.Y. Yang, Z.F. He, and H. Wu. 2009. The 1.35 Ga diabase sills from the northern North China craton: Implications for breakup of the Columbia (Nuna) supercontinent. Earth and Planetary Science Letters 288 (3–4): 588–600.
Article
Google Scholar