Aitchison, J.C. 1988. An Eocene storm-generated littoral placer, Northeast Otago. New Zealand Journal of Geology and Geophysics 31: 381–383.
Google Scholar
Ali, J.R., and D.W. Jolley. 1996. Chronostratigraphic framework for the Thanetian and lower Ypresian deposits of southern England. Geological Society, London, Special Publications 101: 129–144.
Google Scholar
Amaral, G. 1967. Potassium-argon age measurements on some Brazillian glauconites. Earth and Planetary Science Letters 3: 190–192.
Google Scholar
Amorosi, A. 1995. Glaucony and sequence stratigraphy; a conceptual framework of distribution in siliciclastic sequences. Journal of Sedimentary Research 65: 419–425.
Google Scholar
Amorosi, A. 1997. Detecting compositional, spatial, and temporal attributes of glaucony: A tool for provenance research. Sedimentary Geology 109: 135–153.
Google Scholar
Amorosi, A. 2011. The problem of glaucony from the Shannon sandstone (Campanian, Wyoming). Terra Nova 23: 100–107.
Google Scholar
Amorosi, A. 2012. The occurrence of glaucony in the stratigraphic record: Distribution patterns and sequence-stratigraphic significance. International Association of Sedimentologists Special Publications 45: 37–54.
Google Scholar
Amorosi, A., and M.C. Centineo. 1997. Glaucony from the Eocene of the Isle of Wight (southern UK): Implications for basin analysis and sequence-stratigraphic interpretation. Journal of the Geological Society 154: 887–896.
Google Scholar
Amorosi, A., R. Guidi, R. Mas, and E. Falanga. 2012. Glaucony from the Cretaceous of the sierra de Guadarrama (Central Spain) and its application in a sequence-stratigraphic context. International Journal of Earth Sciences 101: 415–427.
Amorosi, A., I. Sammartino, and F. Tateo. 2007. Evolution patterns of glaucony maturity: A mineralogical and geochemical approach. Deep Sea Research Part II: Topical Studies in Oceanography 54: 1364–1374.
Google Scholar
Aubry, M.P. 1985. Northwestern European Paleogene magnetostratigraphy, biostratigraphy, and paleogeography: Calcareous nannofossil evidence. Geology 13: 198–202.
Google Scholar
Ayress, M.A. 2006. Ostracod biostratigraphy of the Oligocene-Miocene (upper Waitakian to lower Otaian) in southern New Zealand. New Zealand Journal of Geology and Geophysics 49: 359–373.
Google Scholar
Baioumy, H.M. 2007. Iron–phosphorus relationship in the iron and phosphorite ores of Egypt. Geochemistry 67: 229–239.
Google Scholar
Baldermann, A., M. Dietzel, V. Mavromatis, F. Mittermayr, L.N. Warr, and K. Wemmer. 2017. The role of Fe on the formation and diagenesis of interstratified glauconite-smectite and illite-smectite: A case study of Upper Cretaceous shallow-water carbonates. Chemical Geology 453: 21–34.
Baldermann, A., L.N. Warr, G.H. Grathoff, and M. Dietzel. 2013. The rate and mechanism of deep-sea glauconite formation at the Ivory Coast–Ghana marginal ridge. Clays and Clay Minerals 61: 258–276.
Google Scholar
Banerjee, S., U. Bansal, K. Pande, and S.S. Meena. 2016b. Compositional variability of glauconites within the Upper Cretaceous Karai Shale Formation, Cauvery Basin, India: Implications for evaluation of stratigraphic condensation. Sedimentary Geology 331: 12–29.
Banerjee, S., U. Bansal, and A.V. Thorat. 2016a. A review on palaeogeographic implications and temporal variation in glaucony composition. Journal of Palaeogeography 5 (1): 43–71.
Google Scholar
Banerjee, S., S.L. Chattoraj, P.K. Saraswati, S. Dasgupta, and U. Sarkar. 2012b. Substrate control on formation and maturation of glauconites in the middle Eocene Harudi formation, western Kutch, India. Marine and Petroleum Geology 30: 144–160.
Google Scholar
Banerjee, S., S.L. Chattoraj, P.K. Saraswati, S. Dasgupta, U. Sarkar, and A. Bumby. 2012a. The origin and maturation of lagoonal glauconites: A case study from the Oligocene Maniyara fort formation, western Kutch, India. Geological Journal 47: 357–371.
Google Scholar
Banerjee, S., S. Farouk, E. Nagm, T.R. Choudhury, and S.S. Meena. 2019. High mg-glauconite in the Campanian Duwi formation of Abu Tartur plateau, Egypt and its implications. Journal of African Earth Sciences 156: 12–25.
Google Scholar
Banerjee, S., S. Jeevankumar, and P.G. Eriksson. 2008. Mg-rich ferric illite in marine transgressive and highstand systems tracts: Examples from the Paleoproterozoic Semri group, Central India. Precambrian Research 162: 212–226.
Google Scholar
Banerjee, S., S. Mondal, P.P. Chakraborty, and S.S. Meena. 2015. Distinctive compositional characteristics and evolutionary trend of Precambrian glaucony: Example from Bhalukona formation, Chhattisgarh basin, India. Precambrian Research 271: 33–48.
Google Scholar
Bansal, U., S. Banerjee, and R. Nagendra. 2020b. Is the rarity of glauconite in Precambrian deposits related to its transformation to chlorite? Precambrian Research: 336. https://doi.org/10.1016/j.precamres.2019.105509.
Bansal, U., S. Banerjee, K. Pande, A. Arora, and S.S. Meena. 2017. The distinctive compositional evolution of glauconite in the Cretaceous Ukra Hill Member (Kutch Basin, India) and its implications. Marine and Petroleum Geology 82: 97–117.
Bansal, U., S. Banerjee, K. Pande, and D.K. Ruidas. 2020a. Unusual seawater composition of the Late Cretaceous Tethys imprinted in glauconite of Narmada Basin, central India. Geological Magazine 157: 233–247.
Bansal, U., S. Banerjee, D.K. Ruidas, and K. Pande. 2018. Origin and geochemical characterization of the glauconites in the Upper Cretaceous Lameta Formation, central India. Journal of Palaeogeography 7 (1): 99–116.
Bansal, U., K. Pande, S. Banerjee, R. Nagendra, and K.C. Jagadeesan. 2019. The timing of oceanic anoxic events in the Cretaceous succession of Cauvery Basin: Constraints from 40Ar/39Ar ages of glauconite in the Karai Shale Formation. Geological Journal 54: 308–315.
Beavington-Penney, S.J., V.P. Wright, and A. Racey. 2006. The middle Eocene Seeb formation of Oman: An investigation of acyclicity, stratigraphic completeness, and accumulation rates in shallow marine carbonate settings. Journal of Sedimentary Research 76: 1137–1161.
Google Scholar
Bekker, A., N. Planavsky, B. Rasmussen, B. Krapez, A. Hofmann, J. Slack, O. Rouxel, and K. Konhauser. 2014. Iron formations: Their origins and implications for ancient seawater chemistry. In Treatise on geochemistry, ed. H. Holland and K. Turekian, 561–628. Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-08-095975-7.00719-1.
Chapter
Google Scholar
Bektemirova, T., A. Bakirov, R. Hu, H. He, Y. Cai, W. Tan, and A. Chen. 2018. Mineralogical evolution of the Paleogene formations in the Kyzyltokoy Basin, Kyrgyzstan: Implications for the formation of glauconite. Clays and Clay Minerals 66: 43–60.
Google Scholar
Bernaola, G., J.I. Baceta, X. Orue-Etxebarria, L. Alegret, M. Martin-Rubio, J. Arostegui, and J. Dinarès-Turell. 2007. Evidence of an abrupt environmental disruption during the mid-Paleocene biotic event (Zumaia section, western Pyrenees). Geological Society of America Bulletin 119: 785–795.
Google Scholar
Berner, R.A. 1981. A new geochemical classification of sedimentary environments. Journal of Sedimentary Research 51: 359–365.
Google Scholar
Bornemann, A., P. Schulte, J. Sprong, E. Steurbaut, M.A. Youssef, and R.P. Speijer. 2009. Latest Danian carbon isotope anomaly and associated environmental change in the southern Tethys (Nile Basin, Egypt). Journal of the Geological Society of London 166: 1135–1142.
Google Scholar
Bosboom, R., O. Mandic, G. Dupont-Nivet, J.N. Proust, C. Ormukov, and J. Aminov. 2017. Late Eocene palaeogeography of the proto-Paratethys Sea in Central Asia (NW China, southern Kyrgyzstan and SW Tajikistan). Geological Society, London, Special Publications 427: 565–588.
Google Scholar
Boucot, A.J., C. Xu, C.R. Scotese, and R.J. Morley. 2013. Phanerozoic Paleoclimate: An Atlas of Lithologic Indicators of Climate, SEPM Concepts in Sedimentology and Paleontology 11, 478. Tulsa: Society for Sedimentary Geology.
Google Scholar
Boukhalfa, K., A. Amorosi, M. Soussi, and K.B. Ismail-Lattrâche. 2015. Glauconitic-rich strata from Oligo-Miocene shallow-marine siliciclastic deposits of the northern margin of Africa (Tunisia): Geochemical approach for basin analysis. Arabian Journal of Geosciences 8: 1731–1742.
Google Scholar
Boukhalfa, K., M. Soussi, E. Ozcan, S. Banerjee, and A. Tounekti. 2020. The Oligo-Miocene siliciclastic foreland basin deposits of northern Tunisia: Stratigraphy, sedimentology and paleogeography. Journal of African Earth Sciences. https://doi.org/10.1016/j.jafrearsci.2020.103932.
Bralower, T.J., I. Premoli Silva, and M.J. Malone. 2002. New evidence for abrupt climate change in the Cretaceous and Paleogene: An ocean drilling program expedition to Shatsky rise, Northwest Pacific. Geological Society of America Today 12: 4–10.
Burst, J.F. 1958. “Glauconite” pellets: Their mineral nature and applications to stratigraphic interpretations. AAPG Bulletin 42: 310–327.
Google Scholar
Campbell, H.J., P.B. Andrews, A.G. Beu, A.R. Edwards, N.D. Hornibrook, M.G. Laird, P.A. Maxwell, and W.A. Watters. 1988. Cretaceous–Cenozoic lithostratigraphy of the Chatham Islands. Journal of the Royal Society of New Zealand 18: 285–308.
Google Scholar
Cecil, C.B. 1990. Paleoclimate controls on stratigraphic repetition of chemical and siliciclastic rocks. Geology 18: 533–536.
Google Scholar
Cecil, C.B., R.W. Stanton, S.G. Neuzil, F.T. Dulong, L.F. Ruppert, and B.S. Pierce. 1985. Paleoclimate controls on late Paleozoic sedimentation and peat formation in the central Appalachian Basin (USA). International Journal of Coal Geology 5: 195–230.
Google Scholar
Chattoraj, S.L., S. Banerjee, and P.K. Saraswati. 2009. Glauconites from the late Palaeocene–early Eocene Naredi formation, western Kutch and their genetic implications. Journal of the Geological Society of India 73: 567.
Google Scholar
Clark, M., and A. Robertson. 2005. Uppermost Cretaceous–lower Tertiary Ulukışla Basin, south-central Turkey: Sedimentary evolution of part of a unified basin complex within an evolving Neotethyan suture zone. Sedimentary Geology 173: 15–51.
Clemmensen, A., and E. Thomsen. 2005. Palaeoenvironmental changes across the Danian–Selandian boundary in the North Sea Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 219: 351–394.
Google Scholar
Cook, P.J., and M.W. McElhinny. 1979. A reevaluation of the spatial and temporal distribution of sedimentary phosphate deposits in the light of plate tectonics. Economic Geology 74: 315–330.
Google Scholar
Cosović, V., and K. Drobne. 1995. Palaeoecological significance of morphology of orthophragminids from the Istrian peninsula (Croatia and Slovenia). Geobios 28: 93–99.
Google Scholar
Cosović, V., K. Drobne, and A. Moro. 2004. Paleoenvironmental model for Eocene foraminiferal limestones of the Adriatic carbonate platform (Istrian peninsula). Facies 50: 61–75.
Google Scholar
Cramer, B.S., M.P. Aubry, K.G. Miller, R.K. Olsson, J.D. Wright, and D.V. Kent. 1999. An exceptional chronologic, isotopic, and clay mineralogic record of the latest Paleocene thermal maximum, Bass River, NJ, ODP 174AX. Bulletin de la Société géologique de France 170: 883–897.
Google Scholar
Cramer, B.S., J.D. Wright, D.V. Kent, and M.P. Aubry. 2003. Orbital climate forcing of δ13C excursions in the late Paleocene–early Eocene (chrons C24n–C25n). Paleoceanography 18 (4). https://doi.org/10.1029/2003PA000909.
Crouch, E.M., G.R. Dickens, H. Brinkhuis, M.P. Aubry, C.J. Hollis, K.M. Rogers, and H. Visscher. 2003. The Apectodinium acme and terrestrial discharge during the Paleocene–Eocene thermal maximum: New palynological, geochemical and calcareous nannoplankton observations at Tawanui, New Zealand. Palaeogeography, Palaeoclimatology, Palaeoecology 194: 387–403.
Google Scholar
Crouch, E.M., C. Heilmann-Clausen, H. Brinkhuis, H.E. Morgans, K.M. Rogers, H. Egger, and B. Schmitz. 2001. Global dinoflagellate event associated with the late Paleocene thermal maximum. Geology 29: 315–318.
Google Scholar
Czuryłowicz, K., A. Lejzerowicz, S. Kowalczyk, and A. Wysocka. 2014. The origin and depositional architecture of Paleogene quartz-glauconite sands in the Lubartów area, eastern Poland. Geological Quarterly 58: 125–144.
Google Scholar
Dallanave, E., V. Bachtadse, E.M. Crouch, L. Tauxe, C.L. Shepherd, H.E. Morgans, C.J. Hollis, B.R. Hines, and S. Sugisaki. 2016. Constraining early to middle Eocene climate evolution of the Southwest Pacific and Southern Ocean. Earth and Planetary Science Letters 433: 380–392.
Google Scholar
De Man, E., and S. Van Simaeys. 2004. Late Oligocene warming event in the southern North Sea Basin: Benthic foraminifera as paleotemperature proxies. Netherlands Journal of Geosciences 83: 227–239.
Google Scholar
Dill, H.G., A. Köthe, F. Gramann, and R. Botz. 1996. A palaeoenvironmental and palaeoecological analysis of fine-grained Paleogene estuarine deposits of North Germany. Palaeogeography, Palaeoclimatology, Palaeoecology 124: 273–326.
Google Scholar
Dix, G.R., and A. Parras. 2014. Integrated diagenetic and sequence stratigraphy of a late Oligocene–early Miocene, mixed-sediment platform (Austral Basin, southern Patagonia): Resolving base-level and paleoceanographic changes, and paleoaquifer characteristics. Sedimentary Geology 307: 17–33.
Google Scholar
Duarte, M.A.T., and M.L. Martínez. 2002. K–Ar dating and geological significance of clastic sediments of the Paleocene Sepultura formation, Baja California, México. Journal of South American Earth Sciences 15: 725–730.
Google Scholar
Dypvik, H., L. Riber, F. Burca, D. Rüther, D. Jargvoll, J. Nagy, and M. Jochmann. 2011. The Paleocene–Eocene thermal maximum (PETM) in Svalbard — Clay mineral and geochemical signals. Palaeogeography, Palaeoclimatology, Palaeoecology 302: 156–169.
Google Scholar
Egger, H., C. Heilmann-Clausen, and B. Schmitz. 2009. From shelf to abyss: Record of the Paleocene/Eocene-boundary in the eastern Alps (Austria). Geologica Acta: an International Earth Science Journal 7: 215–227.
Google Scholar
El Albani, A., A. Meunier, and F. Fürsich. 2005. Unusual occurrence of glauconite in a shallow lagoonal environment (Lower Cretaceous, northern Aquitaine Basin, SW France). Terra Nova 17: 537–544.
El-Habaak, G., M. Askalany, M. Galal, and M. Abdel-Hakeem. 2016. Upper Eocene glauconites from the Bahariya depression: An evidence for the marine regression in Egypt. Journal of African Earth Sciences 117: 1–11.
Google Scholar
Ellison, R.A., J.R. Ali, N.M. Hine, and D.W. Jolley. 1996. Recognition of chron C25n in the upper Paleocene Upnor formation of the London Basin, UK. Geological Society, London, Special Publications 101: 185–193.
Google Scholar
Ferrow, E., V. Vajda, C.B. Koch, B. Peucker-Ehrenbrink, and P.S. Willumsen. 2011. Multiproxy analysis of a new terrestrial and a marine Cretaceous–Paleogene (K–Pg) boundary site from New Zealand. Geochimica et Cosmochimica Acta 75: 657–672.
Fitch, F.J., P.J. Hooker, J.A. Miller, and N.R. Brereton. 1978. Glauconite dating of Palaeocene-Eocene rocks from East Kent and the time-scale of Palaeogene volcanism in the North Atlantic region. Journal of the Geological Society 135: 499–512.
Google Scholar
Franzosi, C., L.N. Castro, and A.M. Celeda. 2014. Technical evaluation of glauconies as alternative potassium fertilizer from the Salamanca formation, Patagonia, Southwest Argentina. Natural Resources Research 23: 311–320.
Google Scholar
Frieling, J., A.I. Iakovleva, G.J. Reichart, G.N. Aleksandrova, Z.N. Gnibidenko, S. Schouten, and A. Sluijs. 2014. Paleocene–Eocene warming and biotic response in the epicontinental west Siberian Sea. Geology 42: 767–770.
Google Scholar
Garnit, H., S. Bouhlel, and I. Jarvis. 2017. Geochemistry and depositional environments of Paleocene–Eocene phosphorites: Metlaoui group, Tunisia. Journal of African Earth Sciences 134: 704–736.
Google Scholar
Gavrilov, Y.O., E.A. Shcherbinina, O.V. Golovanova, and B.G. Pokrovskii. 2013. The late Cenomanian paleoecological event (OAE 2) in the eastern Caucasus basin of northern Peri-Tethys. Lithology and Mineral Resources 48: 457–488.
Google Scholar
Gedl, P. 2014. Eocene dinoflagellate cysts from the Sołokija Graben (Roztocze, SE Poland). Geological Quarterly 58: 707–728.
Google Scholar
Geptner, A.R., T.A. Ivanovskaya, E.V. Pokrovskaya, and N.P. Kuralenko. 2008. Glauconite from Paleogene volcano-terrigenous rocks in Western Kamchatka. Lithology and Mineral Resources 43: 228–249.
Google Scholar
Gibson, T.G., L.M. Bybell, and D.B. Mason. 2000. Stratigraphic and climatic implications of clay mineral changes around the Paleocene/Eocene boundary of the northeastern US margin. Sedimentary Geology 134: 65–92.
Google Scholar
Gibson, T.G., L.M. Bybell, and J.P. Owens. 1993. Latest Paleocene lithologic and biotic events in neritic deposits of southwestern New Jersey. Paleoceanography 8: 495–514.
Google Scholar
Glenn, C.R., and M.A. Arthur. 1990. Anatomy and origin of a Cretaceous phosphorite-greensand giant, Egypt. Sedimentology 37: 123–154.
Goodman, D.K. 1979. Dinoflagellate “communities”; from the lower Eocene Nanjemoy formation of Maryland USA. Palynology 3: 169–190.
Google Scholar
Gradstein, F.M., J.G. Ogg, M.B. Schmitz, and G.M. Ogg. 2012. The Geologic Time Scale 2012. Elsevier, Amsterdam.
Hamberg, L., G. Dam, C. Wilhelmson, and T.G. Ottesen. 2005. Paleocene deep-marine sandstone plays in the Siri canyon, offshore Denmark–southern Norway. In Geological Society, London, Petroleum Geology Conference Series, eds. A.G. Doré, and B.A. Vining. 6: 1185–1198. Geological Society of London.
Haq, B.U., J. Hardenbol, and P.R. Vail. 1987. Chronology of fluctuating sea levels since the Triassic. Science 235: 1156–1167.
Google Scholar
Harder, H. 1980. Syntheses of glauconite at surface temperatures. Clays and Clay Minerals 28: 217–222.
Google Scholar
Harland, W.B., A.V. Cox, P.G. Llewellyn, C.A.G. Pickton, A.G. Smith, and R. Walters. 1982. A Geologic Time Scale. Cambridge: Cambridge University Press.
Google Scholar
Harris, W.B., P.D. Fullagar, and J.A. Winters. 1984. Rb–Sr glauconite ages, Sabinian, Claibornian and Jacksonian units, southeastern Atlantic coastal plain, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 47: 53–76.
Google Scholar
Hegab, O.A., and A.G.A. El-Wahed. 2016. Origin of the glauconite from the middle Eocene, Qarara formation, Egypt. Journal of African Earth Sciences 123: 21–28.
Google Scholar
Hesselbo, S.P., and J.M. Huggett. 2001. Glaucony in ocean-margin sequence stratigraphy (Oligocene–Pliocene, offshore New Jersey, USA; ODP leg 174A). Journal of Sedimentary Research 71: 599–607.
Google Scholar
Hessler, A.M., J. Zhang, J. Covault, and W. Ambrose. 2017. Continental weathering coupled to Paleogene climate changes in North America. Geology 45: 911–914.
Google Scholar
Hines, B.R., D.K. Kulhanek, C.J. Hollis, C.B. Atkins, and H.E.G. Morgans. 2013. Paleocene–Eocene stratigraphy and paleoenvironment at Tora, Southeast Wairarapa, New Zealand. New Zealand Journal of Geology and Geophysics 56: 243–262.
Google Scholar
Homoky, W.B. 2017. Biogeochemistry: Deep ocean iron balance. Nature Geoscience 10: 162–163.
Google Scholar
Hower, J. 1961. Some factors concerning the nature and origin of glauconite. American Mineralogist 46: 313–334.
Google Scholar
Huggett, J., J. Adetunji, F. Longstaffe, and D. Wray. 2017. Mineralogical and geochemical characterisation of warm-water, shallow-marine glaucony from the tertiary of the London Basin. Clay Minerals 52: 25–50.
Google Scholar
Huggett, J.M., and J. Cuadros. 2010. Glauconite formation in lacustrine/palaeosol sediments, Isle of Wight (Hampshire Basin), UK. Clay Minerals 45: 35–49.
Google Scholar
Huggett, J.M., and A.S. Gale. 1997. Petrology and palaeoenvironmental significance of glaucony in the Eocene succession at Whitecliff Bay, Hampshire Basin, UK. Journal of the Geological Society 154: 897–912.
Google Scholar
Hughes, A.D., and D. Whitehead. 1987. Glauconitization of detrital silica substrates in the Barton formation (upper Eocene) of the Hampshire Basin, southern England. Sedimentology 34: 825–835.
Google Scholar
Iakovleva, A.I., and I.A. Kulkova. 2003. Paleocene–Eocene dinoflagellate zonation of Western Siberia. Review of Palaeobotany and Palynology 123: 185–197.
Google Scholar
Jenkyns, H.C. 2003. Evidence for rapid climate change in the Mesozoic–Palaeogene greenhouse world. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 361: 1885–1916.
Google Scholar
Jiang, Z., D. Chen, L. Qiu, H. Liang, and J. Ma. 2007. Source-controlled carbonates in a small Eocene half-graben lake basin (Shulu sag) in Central Hebei Province, North China. Sedimentology 54: 265–292.
Google Scholar
John, C.M., S.M. Bohaty, J.C. Zachos, A. Sluijs, S. Gibbs, H. Brinkhuis, and T.J. Bralower. 2008. North American continental margin records of the Paleocene–Eocene thermal maximum: Implications for global carbon and hydrological cycling. Paleoceanography 23. https://doi.org/10.1029/2007PA001465.
Jorry, S., E. Davaud, and B. Caline. 2003. Controls on the distribution of nummulite facies: A case study from the late Ypresian El Garia formation (Kesra plateau, Central Tunisia). Journal of Petroleum Geology 26: 283–306.
Google Scholar
Kalia, P., and R. Kintso. 2006. Planktonic foraminifera at the Paleocene/Eocene boundary in the Jaisalmer Basin, Rajasthan, India. Micropaleontology 52: 521–536.
Google Scholar
Kechiched, R., R. Laouar, O. Bruguier, S. Salmi-Laouar, L. Kocsis, D. Bosch, A. Foufou, O. Ameur-Zaimeche, and H. Larit. 2018. Glauconite-bearing sedimentary phosphorites from the Tébessa region (eastern Algeria): Evidence of REE enrichment and geochemical constraints on their origin. Journal of African Earth Sciences 145: 190–200.
Google Scholar
Kelly, D.C. 2002. Response of Antarctic (ODP site 690) planktonic foraminifera to the Paleocene–Eocene thermal maximum: Faunal evidence for ocean/climate change. Paleoceanography 17 (4): 1071. https://doi.org/10.1029/2002PA000761.
Article
Google Scholar
Kelly, J.C., and J.A. Webb. 1999. The genesis of glaucony in the Oligo–Miocene Torquay group, southeastern Australia: Petrographic and geochemical evidence. Sedimentary Geology 125: 99–114.
Google Scholar
Khanolkar, S., and P.K. Saraswati. 2015. Ecological response of shallow-marine foraminifera to early Eocene warming in equatorial India. The Journal of Foraminiferal Research 45: 293–304.
Google Scholar
Khanolkar, S., and P.K. Saraswati. 2019. Eocene foraminiferal biofacies in Kutch Basin (India) in context of palaeoclimate and palaeoecology. Journal of Palaeogeography 8 (1): 1–16.
Google Scholar
Khanolkar, S., P.K. Saraswati, and K. Rogers. 2017. Ecology of foraminifera during the middle Eocene climatic optimum in Kutch, India. Geodinamica Acta 29: 181–193.
Google Scholar
Kharkwal, A.D. 1966. Glauconite in the Subathu beds (Eocene) of the Simla Hills of India. Nature 211: 615.
Google Scholar
Kimberley, M.M. 1979. Origin of oolitic iron formations. Journal of Sedimentary Research 49: 111–131.
Google Scholar
Kimoto, K., T. Ishimura, U. Tsunogai, T. Itaki, and Y. Ujiié. 2009. The living triserial planktic foraminifer Gallitellia vivans (Cushman): Distribution, stable isotopes, and paleoecological implications. Marine Micropaleontology 71: 71–79.
Google Scholar
Knox, R.W.B. 1979. Igneous grains associated with zeolites in the Thanet beds of Pegwell Bay, Northeast Kent. Proceedings of the Geologists’ Association 90: 55–59.
Google Scholar
Konhauser, K.O., N.J. Planavsky, D.S. Hardisty, L.J. Robbins, T.J. Warchola, R. Haugaard, S.V. Lalonde, C.A. Partin, P.B.H. Oonk, H. Tsikos, and T.W. Lyons. 2017. Iron formations: A global record of Neoarchaean to Palaeoproterozoic environmental history. Earth-Science Reviews 172: 140–177.
Google Scholar
Kouwenhoven, T.J., R.P. Speijer, C.W.M. Van Oosterhout, and G.J. Van der Zwaan. 1997. Benthic foraminiferal assemblages between two major extinction events: The Paleocene El kef section, Tunisia. Marine Micropalaentology 29: 105–127.
Google Scholar
Kroon, D., and A.J. Nederbragt. 1990. Ecology and paleoecology of triserial planktic foraminifera. Marine Micropalaentology 16: 25–38.
Google Scholar
Lewis, D.W., and S. Belliss. 1984. Mid tertiary unconformities in the Waitaki subdivision, North Otago. Journal of the Royal Society of New Zealand 14: 251–276.
Google Scholar
Li, Q., P.J. Davies, and B. McGowran. 1999. Foraminiferal sequence biostratigraphy of the Oligo-Miocene Janjukian strata from Torquay, southeastern Australia. Australian Journal of Earth Sciences 46: 261–273.
Google Scholar
Liu, A., D. Tang, X. Shi, X. Zhou, L. Zhoue, M. Shang, Y. Li, and H. Fang. 2020. Mesoproterozoic oxygenated deep seawater recorded by early diagenetic carbonate concretions from the member IV of the Xiamaling formation, North China. Precambrian Research 341: 105667.
Google Scholar
Liu, C., J.V. Browning, K.G. Miller, and R.K. Olsson. 1997. Upper Cretaceous to Miocene planktonic foraminiferal biostratigraphy: Results of leg 150X, the New Jersey coastal plain drilling project. In Proceedings of the Ocean Drilling Program. Scientific Results, ed. K.G. Miller and S.W. Snyder, vol. 156, 111–127.
Lourens, L.J., A. Sluijs, D. Kroon, J.C. Zachos, E. Thomas, U. Röhl, J. Bowles, and I. Raffi. 2005. Astronomical pacing of late Palaeocene to early Eocene global warming events. Nature 435: 1083–1087.
Google Scholar
Lucas, J., and L. Prévôt-Lucas. 1995. Tethyan phosphates and bioproductites. In The Tethys Ocean, ed. A.E.M. Nairn, L.E. Ricou, B. Vrielynck, and J. Dercourt, 367–391. Boston: Springer.
Google Scholar
Lurcock, P.C., and G.S. Wilson. 2013. The palaeomagnetism of glauconitic sediments. Global and Planetary Change 110: 278–288.
Google Scholar
MacGregor, A.R. 1983. The Waitakere limestone, a temperate algal carbonate in the lower tertiary of New Zealand. Journal of the Geological Society 140: 387–399.
Google Scholar
Mancini, E.A. 1981. Lithostratigraphy and biostratigraphy of Paleocene subsurface strata in Southwest Alabama. Gulf Coast Association of Geological Societies Transactions 31: 359–367.
Google Scholar
Mancini, E.A., and B.H. Tew. 1993. Eustasy versus subsidence: Lower Paleocene depositional sequences from southern Alabama, eastern gulf coastal plain. Geological Society of America Bulletin 105: 3–17.
Google Scholar
Mandal, S., S. Banerjee, S. Sarkar, I. Mondal, and T.R. Choudhury. 2020. Origin and sequence stratigraphic implications of high-alumina glauconite within the lower quartzite, Vindhyan Supergroup. Marine and Petroleum Geology 112. https://doi.org/10.1016/j.marpetgeo.2019.104040.
Marivaux, L., E.M. Essid, W. Marzougui, H. Khayati Ammar, S. Adnet, B. Marandat, G. Merzeraud, A. Ramdarshan, R. Tabuce, M. Vianey-Liaud, and J. Yans. 2014. A morphological intermediate between eosimiiform and simiiform primates from the late middle Eocene of Tunisia: Macroevolutionary and paleobiogeographic implications of early anthropoids. American Journal of Physical Anthropology 154: 387–401.
Google Scholar
McConchie, D.M., and D.W. Lewis. 1978. Authigenic, perigenic, and allogenic glauconites from the Castle Hill basin, North Canterbury, New Zealand. New Zealand Journal of Geology and Geophysics 21: 199–214.
Google Scholar
Messadi, A.M., B. Mardassi, J.A. Ouali, and J. Touir. 2016. Sedimentology, diagenesis, clay mineralogy and sequential analysis model of upper Paleocene evaporite–carbonate ramp succession from Tamerza area (Gafsa Basin: Southern Tunisia). Journal of African Earth Sciences 118: 205–230.
Google Scholar
Metwally, A.A., and K.H. Mahfouz. 2018. The Paleocene/Eocene (P/E) boundary along the eastern plateau of Kharga-Baris oases, Western Desert, Egypt. Journal of African Earth Sciences 147: 569–584.
Google Scholar
Meunier, A., and A. El Albani. 2007. The glauconite–Fe-illite–Fe-smectite problem: A critical review. Terra Nova 19: 95–104.
Google Scholar
Miller, K.G., J.D. Wright, M.E. Katz, B.S. Wade, J.V. Browning, B.S. Cramer, and Y. Rosenthal. 2009. Climate threshold at the Eocene–Oligocene transition: Antarctic ice sheet influence on ocean circulation. In The Late Eocene Earth: Hothouse, Icehouse, and Impacts, ed. C. Koeberl, and A. Montanari, 452: 169–178. Geological Society of America Special Paper, USA.
Morad, S., J.M. Ketzer, and L.F. De Ros. 2012. Linking diagenesis to sequence stratigraphy: An integrated tool for understanding and predicting reservoir quality distribution. Linking Diagenesis to Sequence Stratigraphy. Special Publication of the International Association of Sedimentologists 45: 1–36.
Google Scholar
Morton, A.C., R.J. Merriman, and J.G. Mitchell. 1984. Genesis and significance of glauconitic sediments of the southwest Rockall plateau. Initial Reports of the Deep Sea Drilling Project 81: 645–652.
Google Scholar
Nahon, D., A.V. Carozzi, and C. Parron. 1980. Lateritic weathering as a mechanism for the generation of ferruginous ooids. Journal of Sedimentary Research 50: 1287–1298.
Google Scholar
Nicolo, M.J., G.R. Dickens, and C.J. Hollis. 2010. South Pacific intermediate water oxygen depletion at the onset of the Paleocene-Eocene thermal maximum as depicted in New Zealand margin sections. Paleoceanography 25: Pa4210. https://doi.org/10.1029/2009pa001904.
Article
Google Scholar
Nicolo, M.J., G.R. Dickens, C.J. Hollis, and J.C. Zachos. 2007. Multiple early Eocene hyperthermals: Their sedimentary expression on the New Zealand continental margin and in the deep sea. Geology 35: 699–702.
Google Scholar
Nigam, R., A. Mazumder, P.J. Henriques, and R. Saraswat. 2007. Benthic foraminifera as proxy for oxygen-depleted conditions off the central west coast of India. Journal of the Geological Society of India 70: 1047–1054.
Google Scholar
Odin, G.S., and A. Matter. 1981. De glauconiarum origine. Sedimentology 28: 611–641.
Google Scholar
Peters, S.E., and R.R. Gaines. 2012. Formation of the ‘great unconformity’ as a trigger for the Cambrian explosion. Nature 484: 363.
Google Scholar
Petters, S.W., and R.K. Olsson. 1979. Planktonic foraminifera from the Ewekoro type section (Paleocene) Nigeria. Micropaleontology 25: 206–213.
Google Scholar
Pietsch, C., H.C. Harrison, and W.D. Allmon. 2016. Whence the Gosport sand (upper middle Eocene, Alabama)? The origin of glauconitic shell beds in the Paleogene of the US gulf coastal plain. Journal of Sedimentary Research 86: 1249–1268.
Google Scholar
Polevaya, N.I., G.A. Murina, and G.A. Kazakov. 1961. Utilization of glauconite in absolute dating. Annals of the New York Academy of Sciences 91: 298–310.
Google Scholar
Porrenga, D.H. 1968. Non-marine glauconitic illite in the lower Oligocene of Aardebrug, Belgium. Clay Minerals 7: 421–430.
Google Scholar
Poulton, S.W., and D.E. Canfield. 2011. Ferruginous conditions: A dominant feature of the ocean through Earth's history. Elements 7: 107–112.
Google Scholar
Prasad, V., I.B. Singh, S. Bajpai, R. Garg, B. Thakur, A. Singh, N. Saravanan, and V.V. Kapur. 2013. Palynofacies and sedimentology-based high-resolution sequence stratigraphy of the lignite-bearing muddy coastal deposits (early Eocene) in the Vastan lignite mine, gulf of Cambay, India. Facies 59: 737–761.
Google Scholar
Raju, S.V., and N. Mathur. 2013. Rajasthan lignite as a source of unconventional oil. Current Science (Bangalore) 104: 752–757.
Google Scholar
Rasmussen, E.S., and K. Dybkjær. 2005. Sequence stratigraphy of the upper Oligocene–Lower Miocene of eastern Jylland Denmark: Role of structural relief and variable sediment supply in controlling sequence development. Sedimentology 52: 25–63.
Google Scholar
Rasser, M.W., and W.E. Piller. 2004. Crustose algal frameworks from the Eocene Alpine foreland. Palaeogeography, Palaeoclimatology, Palaeoecology 206: 21–39.
Google Scholar
Ridgwell, A., and D.N. Schmidt. 2010. Past constraints on the vulnerability of marine calcifiers to massive carbon dioxide release. Nature Geoscience 3: 196–200.
Google Scholar
Rudmin, M., S. Banerjee, E. Abdullayev, A. Ruban, E. Filimonenko, E. Lyapina, R. Kashapov, and A. Mazurov. 2020. Ooidal ironstones in the Meso-Cenozoic sequences in western Siberia: Assessment of formation processes and relationship with regional and global earth processes. Journal of Palaeogeography 9 (1): 1–21.
Google Scholar
Rudmin, M., S. Banerjee, and A. Mazurov. 2017. Compositional variation of glauconites in Upper Cretaceous–Palaeogene sedimentary iron-ore deposits in south-eastern western Siberia. Sedimentary Geology 355: 20–30.
Rudmin, M., A. Mazurov, and S. Banerjee. 2019. Origin of ooidal ironstones in relation to warming events: Cretaceous–Eocene Bakchar deposit, south-East Western Siberia. Marine and Petroleum Geology 100: 309–325.
Google Scholar
Sageman, B.B., and R.C. Speed. 2003. Upper Eocene limestones, associated sequence boundary, and proposed Eocene tectonics in eastern Venezuela. In AAPG Memoir, ed. C. Bartolini, R.T. Buffler, and J. Blickwede, vol. 79, 1–17.
Google Scholar
Saikia, B.K., R.K. Boruah, and P.K. Gogoi. 2009. A X-ray diffraction analysis on graphene layers of Assam coal. Journal of Chemical Sciences 121: 103–106.
Google Scholar
Samanta, A., M.K. Bera, R. Ghosh, S. Bera, T. Filley, K. Pande, S.S. Rathore, J. Rai, and A. Sarkar. 2013a. Do the large carbon isotopic excursions in terrestrial organic matter across Paleocene–Eocene boundary in India indicate intensification of tropical precipitation? Palaeogeography, Palaeoclimatology, Palaeoecology 387: 91–103.
Google Scholar
Samanta, A., A. Sarkar, M.K. Bera, J. Rai, and S.S. Rathore. 2013b. Late Paleocene–early Eocene carbon isotope stratigraphy from a near-terrestrial tropical section and antiquity of Indian mammals. Journal of Earth System Science 122: 163–171.
Google Scholar
Saraswati, P.K., S. Khanolkar, and S. Banerjee. 2018. Paleogene stratigraphy of Kutch, India: An update about progress in foraminiferal biostratigraphy. Geodinamica Acta 30: 100–118.
Google Scholar
Saraswati, P.K., S. Khanolkar, D.S.N. Raju, S. Dutta, and S. Banerjee. 2014. Foraminiferal biostratigraphy of lignite mines of Kutch India: Age of lignite fossil vertebrates. Journal of Palaeogeography 3 (1): 90–98.
Google Scholar
Sarma, J.N., and S. Basumallick. 1979. Glauconite in some Eocene carbonate rocks of Mikir hills, Assam. Indian Journal of Earth Sciences 6: 186–190.
Google Scholar
Sarmah, R.K., and R. Borgohain. 2012. Lithostratigraphy of the Paleogene shelf sediments in Assam and Meghalaya — A review. Indian Streams Research Journal 12: 1–4.
Google Scholar
Savrda, C.E., J.V. Browning, H. Krawinkel, and S.P. Hesselbo. 2001. Firmground ichnofabrics in deep-water sequence stratigraphy, tertiary clinoform-toe deposits, New Jersey slope. Palaios 16: 294–305.
Google Scholar
Schiøler, P., K. Rogers, R. Sykes, C.J. Hollis, B. Ilg, D. Meadows, L. Roncaglia, and C. Uruski. 2010. Palynofacies, organic geochemistry and depositional environment of the tartan formation (late Paleocene), a potential source rock in the great South Basin, New Zealand. Marine and Petroleum Geology 27: 351–369.
Google Scholar
Schmitz, B., B. Peucker-Ehrenbrink, C. Heilmann-Clausen, G. Åberg, F. Asaro, and C.T.A. Lee. 2004. Basaltic explosive volcanism, but no comet impact, at the Paleocene–Eocene boundary: High-resolution chemical and isotopic records from Egypt, Spain and Denmark. Earth and Planetary Science Letters 225: 1–17.
Google Scholar
Schulte, P., L. Schwark, P. Stassen, T.J. Kouwenhoven, A. Bornemann, and R.P. Speijer. 2013. Black shale formation during the latest Danian event and the Paleocene–Eocene thermal maximum in Central Egypt: Two of a kind? Palaeogeography, Palaeoclimatology, Palaeoecology 371: 9–25.
Google Scholar
Schweitzer, C.E., V. Ćosović, and R.M. Feldmann. 2005. Harpactocarcinus from the Eocene of Istria, Croatia, and the paleoecology of the Zanthopsidae via, 1959 (Crustacea: Decapoda: Brachyura). Journal of Paleontology 79: 663–669.
Google Scholar
Self-Trail, J.M., D.S. Powars, D.K. Watkins, and G.A. Wandless. 2012. Calcareous nannofossil assemblage changes across the Paleocene–Eocene thermal maximum: Evidence from a shelf setting. Marine Micropaleontology 92: 61–80.
Google Scholar
Shiloni, Y., A. Segev, G.M. Martinotti, and M. Raab. 1977. An early Eocene glauconitic bed in hor Hahar, northern Negev, Israel. Israel Journal of Earth-Sciences 26: 102–107.
Google Scholar
Sluijs, A., L. Van Roij, G.J. Harrington, S. Schouten, J.A. Sessa, L.J. LeVay, G.J. Reichart, and C.P. Slomp. 2014. Warming, euxinia and sea level rise during the Paleocene–Eocene thermal maximum on the Gulf coastal plain: Implications for ocean oxygenation and nutrient cycling. Climate of the Past 10: 1421–1439.
Google Scholar
Sorrentino, L., J.D. Stilwell, and C. Mays. 2014. A model of tephra dispersal from an early Palaeogene shallow submarine Surtseyan-style eruption(s), the red bluff tuff formation, Chatham Island New Zealand. Sedimentary Geology 300: 86–102.
Google Scholar
Soudry, D., C.R. Glenn, Y. Nathan, I. Segal, and D. VonderHaar. 2006. Evolution of Tethyan phosphogenesis along the northern edges of the Arabian–African shield during the Cretaceous–Eocene as deduced from temporal variations of Ca and Nd isotopes and rates of P accumulation. Earth-Science Reviews 78: 27–57.
Speijer, R.P., and B. Schmitz. 1998. A benthic foraminiferal record of Paleocene Sea level and trophic/redox conditions at Gebel Aweina, Egypt. Palaeogeography, Palaeoclimatology, Palaeoecology 137: 79–101.
Google Scholar
Sprong, J., T.J. Kouwenhoven, A. Bornemann, C. Dupuis, R.P. Speijer, P. Stassen, and E. Steurbaut. 2013. In search of the latest Danian event in a paleobathymetric transect off Kasserine Island north-Central Tunisia. Palaeogeography, Palaeoclimatology, Palaeoecology 379: 1–16.
Google Scholar
Stap, L., L.J. Lourens, E. Thomas, A. Sluijs, S. Bohaty, and J.C. Zachos. 2010. High-resolution deep-sea carbon and oxygen isotope records of Eocene thermal maximum 2 and H2. Geology 38: 607–610.
Google Scholar
Stap, L., A. Sluijs, E. Thomas, and L. Lourens. 2009. Patterns and magnitude of deep sea carbonate dissolution during Eocene thermal maximum 2 and H2, Walvis ridge, southeastern Atlantic Ocean. Paleoceanography 24 (1): A1211 https://doi.org/10.1029/2008PA001655.
Google Scholar
Stassen, P., E. Thomas, and R.P. Speijer. 2015. Paleocene–Eocene thermal maximum environmental change in the New Jersey coastal plain: Benthic foraminiferal biotic events. Marine Micropaleontology 115: 1–23.
Google Scholar
Steurbaut, E., C. Dupuis, I. Arenillas, E. Molina, and M.F. Matmati. 2000. The Kalaat Senan section in Central Tunisia: A potential reference section for the Danian/Selandian boundary. GFF 122: 158–160.
Google Scholar
Steurbaut, E., R. Magioncalda, C. Dupuis, S. Van Simaeys, E. Roche, and M. Roche. 2003. Palynology, paleoenvironments, and organic carbon isotope evolution in lagoonal Paleocene–Eocene boundary settings in North Belgium. In Causes and Consequences of Globally Warm Climates in the Early Paleogene, ed. S.L. Wing, P.D. Gingerich, B. Schmitz, and E. Thomas, vol. 369, 291–317. Boulder: Geological Society of America Special Paper.
Google Scholar
Strickler, M.E., and R.E. Ferrell Jr. 1990. Fe substitution for Al in glauconite with increasing diagenesis in the first Wilcox sandstone (lower Eocene), Livingston parish, Louisiana. Clays and Clay Minerals 38: 69–76.
Google Scholar
Tang, D., X. Shi, G. Jiang, X. Zhou, and Q. Shi. 2017b. Ferruginous seawater facilitates the transformation of glauconite to chamosite: An example from the Mesoproterozoic Xiamaling formation of North China. American Mineralogist 102: 2317–2332.
Google Scholar
Tang, D., X. Shi, J. Ma, G. Jiang, X. Zhou, and Q. Shi. 2017a. Formation of shallow water glaucony in weakly oxygenated Precambrian Ocean: An example from the Mesoprterozoic Tieling formation in North China. Precambrian Research 294: 214–229.
Google Scholar
Taylor, K.G., and J.H. Macquaker. 2011. Iron minerals in marine sediments record chemical environments. Elements 7: 113–118.
Google Scholar
Tazaki, K., and W.S. Fyfe. 1992. Microbial green marine clay from Izu-Bonin (West Pacific) deep-sea sediments. Chemical Geology 102: 105–118.
Google Scholar
Thomas, E. 1998. Biogeography of the late Paleocene benthic foraminiferal extinction. In Late Paleocene–Early Eocene Climatic and Biotic Events in the Marine and Terrestrial Records, ed. M.P. Aubry, 214–243.
Google Scholar
Tlig, S., S. Sahli, L. Er-Raioui, R. Alouani, and M. Mzoughi. 2010. Depositional environment controls on petroleum potential of the Eocene in the north of Tunisia. Journal of Petroleum Science and Engineering 71: 91–105.
Google Scholar
Todd, S.E., P.K. Pufahl, J.B. Murphy, and K.G. Taylor. 2019. Sedimentology and oceanography of early Ordovician ironstone, Bell Island Newfoundland: Ferruginous seawater and upwelling in the Rheic Ocean. Sedimentary Geology 379: 1–15.
Google Scholar
Tóth, E., T.G. Weiszburg, T. Jeffries, C.T. Williams, A. Bartha, É. Bertalan, and I. Cora. 2010. Submicroscopic accessory minerals overprinting clay mineral REE patterns (celadonite–glauconite group examples). Chemical Geology 269: 312–328.
Google Scholar
van der Lingen, G.J., D. Smale, and D.W. Lewis. 1978. Alteration of a pelagic chalk below a paleokarst surface, Oxford, South Island New Zealand. Sedimentary Geology 21: 45–66.
Google Scholar
van Houten, F.B. 1992. Review of Cenozoic ooidal ironstones. Sedimentary Geology 78: 101–110.
Google Scholar
Vanhove, D., P. Stassen, R.P. Speijer, and E. Steurbaut. 2011. Assessing paleotemperature and seasonality during the early Eocene climatic optimum (EECO) in the Belgian Basin by means of fish otolith stable O and C isotopes. Geologica Belgica 14: 143–157.
Google Scholar
Wei, W. 2004. Opening of the Australia–Antarctica gateway as dated by nannofossils. Marine Micropaleontology 52: 133–152.
Google Scholar
Wei, W., T.J. Algeo, Y. Lu, Y. Lu, H. Liu, S. Zhang, L. Peng, J. Zhang, and L. Chen. 2018. Identifying marine incursions into the Paleogene Bohai Bay basin lake system in northeastern China. International Journal of Coal Geology 200: 1–17.
Google Scholar
Wigley, R.A., and J.S. Compton. 2006. Late Cenozoic evolution of the outer continental shelf at the head of the cape canyon, South Africa. Marine Geology 226: 1–23.
Google Scholar
Zachos, J.C., K.C. Lohmann, J.C. Walker, and S.W. Wise. 1993. Abrupt climate change and transient climates during the Paleogene: A marine perspective. The Journal of Geology 101: 191–213.
Google Scholar
Zachos, J.C., H. McCarren, B. Murphy, U. Röhl, and T. Westerhold. 2010. Tempo and scale of late Paleocene and early Eocene carbon isotope cycles: Implications for the origin of hyperthermals. Earth and Planetary Science Letters 299: 242–249.
Google Scholar
Zachos, J.C., M. Pagani, L. Sloan, E. Thomas, and K. Billups. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686–693.
Google Scholar
Zarasvandi, A., Z. Fereydouni, H. Pourkaseb, M. Sadeghi, B. Mokhtari, and B. Alizadeh. 2019. Geochemistry of trace elements and their relations with organic matter in Kuh-e-Sefid phosphorite mineralization, Zagros Mountain, Iran. Ore Geology Reviews 104: 72–87.
Google Scholar