Algeo, T.J., and J.B. Maynard. 2004. Trace-element behavior and redox facies in core shales of upper Pennsylvanian Kansas-type cyclothems. Chemical Geology 206: 289–318.
Article
Google Scholar
Aller, R.C. 1994. Bioturbation and remineralization of sedimentary organic matter: Effects of redox oscillation. Chemical Geology 114: 331–345.
Article
Google Scholar
Armstrong-Altrin, J.S., M.L. Machain-Castillo, L. Rosales-Hoz, A. Carranza-Edwards, J.A. Sanchez-Cabeza, and A.C. Ruíz-Fernandez. 2015. Provenance and depositional history of continental slope sediments in the southwestern Gulf of Mexico unraveled by geochemical analysis. Continental Shelf Research 95: 15–26.
Article
Google Scholar
Awramik, S.M., and J. Sprinkle. 1999. Proterozoic stromatolites: The first marine evolutionary biota. Historical Biology 13 (4): 241–253.
Article
Google Scholar
Beikirch, D.W., and R.M. Feldmann. 1980. Decapods crustaceans from the Pflugerville member, Austin formation (late cretaceous: Campanian) of Texas. Journal of Paleontology 54: 309–324.
Google Scholar
Berner, R.A. 2009. Phanerozoic atmospheric oxygen: New results using the GEOCARBSULF model. American Journal of Science 309 (7): 603–606.
Article
Google Scholar
Boyle, R.A., T.W. Dahl, C.J. Bjerrum, and D.E. Canfield. 2018. Bioturbation and directionality in Earth's carbon isotope record across the Neoproterozoic–Cambrian transition. Geobiology 16 (3): 252–278.
Article
Google Scholar
Boyle, R.A., T.W. Dahl, A.W. Dale, G.A. Shield-Zhou, M. Zhu, M.D. Brasier, D.E. Canfield, and T.M. Lenton. 2014. Stabilization of the coupled oxygen and phosphorus cycles by the evolution of bioturbation. Nature Geoscience 7 (9): 671–676.
Article
Google Scholar
Brlek, M., T. Korbar, A. Košir, B. Glumac, A. Grizelj, and B. Otoničar. 2014. Discontinuity surfaces in upper cretaceous to Paleogene carbonates of central Dalmatia (Croatia): Glossifungites ichnofacies, biogenic calcretes, and stratigraphic implications. Facies 60 (2): 467–487.
Article
Google Scholar
Bromley, R.G. 1996. Trace fossils: biology and taphonomy, 280. London: Chapman & Hall.
Book
Google Scholar
Buatois, L.A., G.M. Narbonne, M.G. Mángano, N.B. Carmona, and P. Myrow. 2014. Ediacaran matground ecology persisted into the earliest Cambrian. Nature Communications 5: 35–44.
Article
Google Scholar
Canfield, D.E., and J. Farquhar. 2009. Animal evolution, bioturbation, and the sulfate concentration of the oceans. Proceedings of the National Academy of Sciences of the United States of America 106 (20): 8123–8127.
Article
Google Scholar
Carvalho, C.N.D., P.A. Viegas, and MárioCachão. 2007. Thalassinoides and its producer: Populations of Mecochirus buried within their burrow systems, Boca do Chapim formation (lower cretaceous), Portugal. Palaios 22 (1): 104–109.
Article
Google Scholar
Chen, Z., C.M. Zhou, M. Meyer, X. Xiang, J.D. Schiffbauer, X.L. Yuan, and S.H. Xiao. 2013. Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors. Precambrian Research 224: 690–701.
Article
Google Scholar
Cherns, L., J.R. Wheelye, and L. Karis. 2006. Tunneling trilobites: Habitual infaunalism in an Ordovician carbonate seafloor. Geology 34: 657–660.
Article
Google Scholar
Ciutat, A., M. Gerino, and A. Boudou. 2007. Remobilization and bioavailability of cadmium from historically contaminated sediments: Influence of bioturbation by tubificids. Ecotoxicology and Environmental Safety 68 (1): 108–117.
Article
Google Scholar
D'Andrea, A.F., and T.H. DeWitt. 2009. Geochemical ecosystem engineering by the mud shrimp Upogebia pugettensis (Crustacea: Thalassinidae) in Yaquina Bay, Oregon: Density-dependent effects on organic matter remineralization and nutrient cycling. Limnology and Oceanography 54 (6): 1911–1932.
Article
Google Scholar
Darwin, C. 1881. The formation of vegetable mould through the action of worms, with observations on their habits, 326. London: John Murray.
Book
Google Scholar
Ding, Y., J.N. Liu, F.F. Chen, and X.D. Wang. 2020. Ichnology, palaeoenvironment, and ecosystem dynamics of the early Cambrian (stage 4, series 2) Guanshan Biota, South China. Geological Journal 55 (1): 77–94.
Article
Google Scholar
Dornbos, S.Q., D.J. Bottjer, and J.Y. Chen. 2005. Paleoecology of benthic metazoans in the early Cambrian Maotianshan shale biota and the middle Cambrian burgess shale biota: Evidence for the Cambrian substrate revolution. Palaeogeography, Palaeoclimatology, Palaeoecology 220 (1–2): 47–67.
Article
Google Scholar
Dymond, J., E. Suess, and M. Lyle. 1992. Barium in deep-sea sediment: A geochemical proxy for paleoproductivity. Paleoceanography 7 (2): 163–181.
Article
Google Scholar
Ekdale, A.A., and R.G. Bromley. 2003. Paleoethologic interpretation of complex Thalassinoides in shallow-marine limestones, lower Ordovician, southern Sweden. Palaeogeography, Palaeoclimatology Palaeoecology 192: 221–227.
Article
Google Scholar
El-Sabbagh, A., M. El-Hedeny, and S.A. Farraj. 2017. Thalassinoides in the middle Miocene succession at Siwa Oasis, northwestern Egypt. Proceedings of the Geologists’ Association 128 (2): 222–233.
Article
Google Scholar
Fan, Y.C., Y.A. Qi, M.Y. Dai, G.S. Qing, B.C. Liu, and W.B. Bai. 2020. Paleoclimate evolution recorded in the Cambrian Epoch 2 Zhushadong Formation from Dengfeng area, western Henan Province. Journal of Palaeogeography (Chinese Edition) 22 (2): 367–376.
Google Scholar
Fang, X.Y., L.L. Wu, A.S. Geng, and Q. Deng. 2019. Formation and evolution of the Ediacaran to Lower Cambrian black shales in the Yangtze platform, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 527: 87–102.
Article
Google Scholar
Glaessner, M.F. 1957. Palaeozoic arthropod trail from Australia. Paläontologische Zeitschrift 3: 103–109.
Article
Google Scholar
Herringshaw, L.G., R.H.T. Callow, and D. Mcilroy. 2017. Engineering the Cambrian explosion: The earliest bioturbators as ecosystem engineers. Geological Society of London, Special Publications 448: 369–382.
Article
Google Scholar
Jaccard, S.L., C.T. Hayes, A. Martínez-García, D.A. Hodell, R.F. Anderson, D.M. Sigman, and G.H. Haug. 2013. Two modes of change in southern ocean productivity over the past million years. Science 339 (6126): 1419–1423.
Article
Google Scholar
Janas, U., D. Burska, H. Kendzierska, D. Pryputniewicz-Flis, and K. Lukawska-Matuszewska. 2019. Importance of benthic macrofauna and coastal biotopes for ecosystem functioning — Oxygen and nutrient fluxes in the coastal zone. Estuarine Coastal and Shelf Science 225: 106–238.
Article
Google Scholar
Jones, B., and D.A.C. Manning. 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology 111: 111–129.
Article
Google Scholar
Kamber, B.S., S. Moorbath, and M.J. Whitehouse. 2001. The oldest rocks on earth: Time constraints and geological controversies. Geological Society of London, Special Publications 190: 177–203.
Article
Google Scholar
Kimura, H., and Y. Watanabe. 2001. Oceanic anoxia at the Precambrian–Cambrian boundary. Geology 29 (11): 995–998.
Article
Google Scholar
Kinoshita, K., M. Wada, K. Kogure, and T. Furota. 2008. Microbial activity and accumulation of organic matter in the burrow of the mud shrimp, Upogebia major, (Crustacea: Thalassinidea). Marine Biology 153 (3): 277–283.
Article
Google Scholar
Krumbein, W.E. 1983. Stromatolites — The challenge of a term in space and time. Precambrian Research 20 (2–4): 493–531.
Article
Google Scholar
Landrum, P.F., M. Leppänen, S.D. Robinson, D.C. Gossiaux, and M.B. Lansing. 2004. Effect of 3,4,3′,4′-tetrachlorobiphenyl on the reworking behavior of Lumbriculus variegatus exposed to contaminated sediment. Environmental Toxicology and Chemistry 23 (1): 178–186.
Article
Google Scholar
Liu, Y.J., L.M. Cao, Z.L. Li, H.N. Wang, and T.Q. Chu. 1984. Elemental geochemistry, 360–372. Beijing: Science Press (in Chinese with English Abstract).
Google Scholar
Lohrer, A.M., S.F. Thrush, and M.M. Gibbs. 2004. Bioturbators enhance ecosystem function through complex biogeochemical interactions. Nature 431 (7012): 1092–1095.
Article
Google Scholar
Mángano, M.G., and L.A. Buatois. 2004. Reconstructing early Phanerozoic intertidal ecosystems: Ichnology of the Cambrian Campanario formation in Northwest Argentina. Fossils and Strata 51 (51): 17–38.
Google Scholar
Mángano, M.G., and L.A. Buatois. 2014. Decoupling of body-plan diversification and ecological structuring during the Ediacaran–Cambrian transition: Evolutionary and geobiological feedbacks. Proceedings of the Royal Society B: Biological Sciences 281 (1780): 20140038. https://doi.org/10.1098/rspb.2014.0038.
Article
Google Scholar
McLennan, S.M. 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry Geophysics Geosystems 2 (4). https://doi.org/10.1029/2000GC000109.
Meysman, F.J., J.J. Middelburg, and C.H. Heip. 2006. Bioturbation: A fresh look at Darwin’s last idea. Trends in Ecology & Evolution 21 (12): 688–695.
Article
Google Scholar
Michaud, E., G. Desrosiers, F. Mermillod-Blondin, B. Sundby, and G. Stora. 2005. The functional group approach to bioturbation: The effects of biodiffusers and gallery-diffusers of the Macoma balthica community on sediment oxygen uptake. Journal of Experimental Marine Biology and Ecology 326 (1): 77–88.
Article
Google Scholar
Michaud, E., G. Desrosiers, F. Mermillod-Blondin, B. Sundby, and G. Stora. 2006. The functional group approach to bioturbation: Ii. The effects of the Macoma balthica community on fluxes of nutrients and dissolved organic carbon across the sediment–water interface. Journal of Experimental Marine Biology and Ecology 337 (2–3): 178–189.
Article
Google Scholar
Murry, R.W., M.R. Buchholtz, D.C. Gerlach, and G. Price Russ III. 1991. Rare earth, major, and trace elements in chert from the Franciscan complex and Monterey group, Californian: Assessing REE sources to fine-grained marine sediments. Geochimica et Cosmochimica Acta 55 (7): 1875–1895.
Article
Google Scholar
Myrow, P.M. 1995. Thalassinoides and the enigma of early Paleozoic open framework burrow systems. Palaios 10 (1): 58–74.
Article
Google Scholar
Ndjigui, P.D., V.L. Onana, E. Sababa, and E.C. Bayiga. 2018. Mineralogy and geochemistry of the Lokoundje alluvial clays from the Kribi deposits, Cameroonian Atlantic coast: Implications for their origin and depositional environment. Journal of African Earth Sciences 143: 102–117.
Article
Google Scholar
Nicholaus, R., B. Lukwambe, L. Zhao, W. Yang, J.Y. Zhu, and Z.M. Zheng. 2019. Bioturbation of blood clam Tegillarca granosa on benthic nutrient fluxes and microbial community in an aquaculture wastewater treatment system. International Biodeterioration & Biodegradation 142: 73–82.
Article
Google Scholar
Nickell, L.A., and R.J.A. Atkinson. 1995. Functional morphology of burrows and trophic modes of three thalassinidean shrimp species, and a new approach to the classification of thalassinidean burrow morphology. Marine Ecology Progress Series 128 (1): 181–197.
Article
Google Scholar
Pei, F., H.Q. Zhang, G.S. Yan, and Y.B. Xi. 2008. Research on stratigraphic paleontology in Henan Province, volume 3, early Paleozoic (North China). Zhengzhou: Yellow River Water Conservancy Press (in Chinese with English Abstract).
Google Scholar
Pillay, D., and G.M. Branch. 2011. Bioengineering effects of burrowing thalassinidean shrimps on marine soft-bottom ecosystems. Oceanography and Marine Biology 49: 137–192.
Google Scholar
Pillay, D., G.M. Branch, J. Dawson, and D. Henry. 2011. Contrasting effects of ecosystem engineering by the cordgrass Spartina maritima and the sandprawn Callianassa kraussi in a marine-dominated lagoon. Estuarine Coastal and Shelf Science 91 (2): 169–176.
Article
Google Scholar
Piper, D.Z., and S.E. Calvert. 2009. A marine biogeochemical perspective on black shale deposition. Earth-Science Reviews 95 (1): 63–96.
Article
Google Scholar
Qi, Y.A. 1999. The description and analysis of bioturbation and ichnofabric. Henan Geology 17 (4): 273–277 (in Chinese with English Abstract).
Google Scholar
Qi, Y.A., Y. Meng, M.Y. Dai, and D. Li. 2014. Biogenic leopard patch structures from the Zhushadong Formation (Cambrian series 2), Dengfeng area, Western Henan. Geological Science and Technology Information 33 (5): 1–8 (in Chinese with English Abstract).
Google Scholar
Repetto, M., and B.D. Griffen. 2012. Physiological consequences of parasite infection in the burrowing mud shrimp, Upogebia pugettensis, a widespread ecosystem engineer. Marine and Freshwater Research 63 (1): 60–67.
Article
Google Scholar
Riding, R., L. Liang, J.H. Lee, and A. Virgone. 2019. Influence of dissolved oxygen on secular patterns of marine microbial carbonate abundance during the past 490 Myr. Palaeogeography, Palaeoclimatology, Palaeoecology 514: 135–143.
Article
Google Scholar
Schoepfer, S.D., J. Shen, H.Y. Wei, R.V. Tyson, E. Ingall, and T.J. Algeo. 2015. Total organic carbon, organic phosphorus, and biogenic barium fluxes as proxies for paleomarine productivity. Earth-Science Reviews 149: 23–52.
Article
Google Scholar
Seilacher, A. 1999. Biomat-ralated lifestyles in the Precambrian. Palaios 14 (1): 86–93.
Article
Google Scholar
Shen, H., G. Jiang, X.H. Wan, H. Li, Y. Qiao, S. Thrush, and P.H. He. 2017. Response of the microbial community to bioturbation by benthic macrofauna on intertidal flats. Journal of Experimental Marine Biology and Ecology 488: 44–51.
Article
Google Scholar
Stamhuis, E.J., C.E. Schreurs, and J.J. Videler. 1997. Burrow architecture and turbative activity of the thalassinid shrimp Callianassa subterranea from the Central North Sea. Marine Ecology Progress Series 151 (1–3): 155–163.
Article
Google Scholar
Stoll, H.M., and D.P. Schrag. 2001. Sr/Ca variations in cretaceous carbonates: Relation to productivity and sea level changes. Palaeogeography, Palaeoclimatology, Palaeoecology 168 (3–4): 311–336.
Article
Google Scholar
Tarhan, L.G. 2018. The early Paleozoic development of bioturbation — Evolutionary and geobiological consequences. Earth-Science Reviews 178: 177–207.
Article
Google Scholar
Taylor, A.M., and R. Goldring. 1993. Description and analysis of bioturbation and ichnofabric. Journal of Geological Society 150 (1): 141–148.
Article
Google Scholar
Tribovillard, N., T.J. Algeo, T. Lyons, and A. Riboulleau. 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology 232 (1–2): 12–32.
Article
Google Scholar
Tyson, R.V., and T.H. Pearson. 1991. Modern and ancient continental shelf anoxia: An overview. Arctic and Alpine Research 58 (1): 1–24.
Google Scholar
Wang, M., K.N. Li, W.T. Yang, M.Y. Dai, W.B. Bai, and Y.A. Qi. 2019. The trace fossil Thalassinoides bacae in the Cambrian Zhangxia formation (Miaolingian series) of North China. Palaeogeography, Palaeoclimatology, Palaeoecology 534: 109333. https://doi.org/10.1016/j.palaeo.2019.109333.
Article
Google Scholar
Wei, H.Y. 2012. Productivity and redox proxies of palaeo-oceans: An overview of elementary geochemistry. Sedimentary Geology and Tethyan Geology 32 (2): 78–90 (in Chinese with English Abstract).
Google Scholar
Xiang, L., S.D. Schoepfer, H. Zhang, X.L. Yuan, C.Q. Cao, Q.F. Zheng, C.M. Henderson, and S.Z. Shen. 2017. Oceanic redox evolution across the end-Permian mass extinction at Shangsi, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 448: 59–71.
Article
Google Scholar
Yan, C.N., Z.J. Jin, J.H. Zhao, W. Du, and Q.Y. Liu. 2018. Influence of sedimentary environment on organic matter enrichment in shale: A case study of the Wufeng and Longmaxi formation of the Sichuan Basin, China. Marine and Petroleum Geology 92: 880–894.
Article
Google Scholar
Yang, Z.Y., Otofuji Yo-ichiro, Z.M. Sun, and B.C. Huang. 2002. Magnetostratigraphic constraints on the Gondwanan origin of North China: Cambrian/Ordovician boundary results. Geophysical Journal International 151 (1): 1–10.
Article
Google Scholar
Zhang, L.J., Y.A. Qi, L.A. Buatois, M.G. Mángano, Y. Meng, and D. Li. 2017. The impact of deep-tier burrow systems in sediment mixing and ecosystem engineering in early Cambrian carbonate settings. Scientific Reports 7: 45773. https://doi.org/10.1038/srep45773.
Article
Google Scholar
Zhang, W., X. Shi, G. Jiang, D. Tang, and X. Wang. 2015. Mass-occurrence of oncoids at the Cambrian series 2–series 3 transition: Implications for microbial resurgence following an early Cambrian extinction. Gondwana Research 28 (1): 432–450.
Article
Google Scholar
Ziebis, W., S. Forster, M. Huettel, and B.B. Jørgensen. 1996. Complex burrows of the mud shrimp Callianassa truncata and their geochemical impact in the sea bed. Nature 382 (6592): 619–622.
Article
Google Scholar