Alves, T.M. 2012. Scale-relationships and geometry of normal faults reactivated during gravitational gliding of Albian rafts (Espírito Santo Basin, SE Brazil). Earth and Planetary Science Letters 331: 80–96.
Article
Google Scholar
Archer, S.G., H.L. Wycherley, G.R. Watt, M.L. Baron, J. Parnell, and H. Chen. 2004. Evidence for focused hot fluid flow within the Britannia field, offshore Scotland, UK. Basin Research 16: 377–395.
Article
Google Scholar
Beglinger, S.E., H. Doust, and S. Cloetingh. 2012. Relating petroleum system and play development to basin evolution: Brazilian South Atlantic margin. Petroleum Geoscience 18: 315–336.
Article
Google Scholar
Berner, R.A. 1981. A new geochemical classification of sedimentary environments. Journal of Sedimentary Research 51: 359–365.
Google Scholar
Berner, R.A. 1984. Sedimentary pyrite formation: An update. Geochimica et CosmochimicaActa 48: 605–615.
Article
Google Scholar
Bethke, C.M. 2002. The geochemists workbench version 4.0: A User's guide, 224. Urbana, IL: University ofIllinois.
Google Scholar
Bezerra, M.F.C. 2011. Developments of Deep Offshore and Deeply Buried Reservoirs. 20thWorld Petroleum Congress, 20th World Petroleum Congress, 4-8 December, Doha, Qatar. 2011. https://www.onepetro.org/conference-paper/WPC-20-3272.
Cainelli, C., and W.U. Mohriak. 1999. Some remarks on the evolution of sedimentary basins along the eastern Brazilian continental margin. Episodes-Newsmagazine of the International Union of Geological Sciences 22: 206–216.
Google Scholar
Carvalho, M.V., L.F., De Ros, and N.S.Gomes. 1995. Carbonate cementation patterns and diagenetic reservoir facies in the Campos Basin cretaceous turbidites, offshore eastern Brazil. Marine and Petroleum Geology 12: 741–758.
Article
Google Scholar
Chang, H.K., R.O. Kowsmann, A.M.F. Figueiredo, and A. Bender. 1992. Tectonics and stratigraphy of the East Brazil rift system: An overview. Tectonophysics 213: 97–138.
Article
Google Scholar
de Oliveira, D.M. 2018. Diagênese meteórica e relacionada a domos de sal em reservatórios turbiditicos Terciários da bacia do Espírito Santo, Brasil. Masters Thesis: Universidade Federal do Rio Grande do Sul: 1-78 (in Portuguese).
Enos, J.S., and J.R. Kyle. 2002. Diagenesis of the Carrizo Sandstone at Butler Salt Dome, East Texas Basin, USA: Evidence for fluid-sediment interaction near halokinetic structures. Journal of Sedimentary Research 72: 68–81.
Article
Google Scholar
Esch, W.L., and J.S. Hanor. 1995. Fault and fracture control of fluid and diagenesis around the Iberia Salt Dome, Iberia Parish, Louisiana. Transactions of the Gulf Coast Association of Geological Societies 45: 181–187.
Google Scholar
Evans, D.G., and J.A. Nunn. 1989. Free thermohaline convection in sediments surrounding a salt column. Journal of Geophysical Research: Solid Earth 94 (B9): 12413–12422.
Article
Google Scholar
Evans, D.G., J.A. Nunn, and J.S. Hanor. 1991. Mechanisms driving groundwater flow near salt domes. Geophysical Research Letters 18: 927–930.
Article
Google Scholar
França, R.L., A.C. Del Rey, C.V. Tagliari, J.R. Brandão, and P.D.R. Fontanelli, 2007. Bacia do Espírito Santo. Boletim de Geociencias da Petrobras 15: 501–509 (in Portuguese).
Gallagher, K., C.J. Hawkesworth, and M.S.M. Mantovani. 1995. Denudation, fission track analysis and the long-term evolution of passive margin topography: Application to the southeast Brazilian margin. Journal of South American Earth Sciences 8: 65–77.
Article
Google Scholar
Galloway, W.E. 1984. Hydrogeologic regimes of sandstone diagenesis. In Relationship of organic matter and mineral diagenesis, ed. D.A. McDonald and R.C. Surdam, vol. 17, 6–72. New York: Soc. Econ. Paleo. Min., Lecture Notes for Short Course.
Google Scholar
Gaupp, R., A. Matter, J. Platt, K. Ramseyer, and J. Walzebuck. 1993. Diagenesis and fluid evolution of deeply buried Permian (Rotliegende) gas reservoirs, northwest Germany. AAPG Bulletin 77: 1111–1128.
Google Scholar
Genthon, P., J. Schott, and J.L. Dandurand. 1997. Carbonate diagenesis during thermo-convection: Application to secondary porosity generation in clastic reservoirs. Chemical Geology 142: 41–61.
Article
Google Scholar
Giles, M.R., S.L. Indrelid, G.V. Beynon, and J. Amthor. 2000. The origin of large-scale quartz cementation: Evidence from large data sets and coupled heat-fluid mass transport modeling. Quartz Cementation in Sandstones, IAS Special Publication 29: 21–38.
Article
Google Scholar
Hanor, J.S. 1994. Origin of saline fluids in sedimentary basins. In Geological Society of London Special Publication, ed. J. Parnell , vol. 78, 151–174.Geofluids: Origin and migration of fluids in sedimentary basins
Google Scholar
Hanor, J.S. 1999. Thermohaline pore water trends of southeastern Louisiana revisited [abs]. AAPG Bulletin 83: 1354.
Google Scholar
Hanor, J.S., and J.C. McIntosh. 2007. Diverse origins and timing of formation of basinal brines in the Gulf of Mexico sedimentary basin. Geofluids 7: 227–237.
Article
Google Scholar
Haszeldine, R.S., C.I. Macaulay, A. Marchand, M. Wilkinson, C.M. Graham, A. Cavanagh, A.E. Fallick, and G.D. Couples. 2000. Sandstone cementation and fluids in hydrocarbon basins. Journal of Geochemical Exploration 69: 195–200.
Article
Google Scholar
Helgeson, H.C., R.M. Garrels, and F.T. MacKenzie. 1969. Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions—II. Applications. Geochimica et CosmochimicaActa 33: 455–481.
Article
Google Scholar
Helgeson, H.C., D.H. Kirkham, and G.C. Flowers. 1981. Theoretical prediction of the thermodynamic behavior of aqueous electrolytes by high pressures and temperatures; IV, calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 degrees C and 5kb. American Journal of Science 281: 1249–1516.
Article
Google Scholar
Klunk, M.A., L.H. Damiani, G. Feller, R.V. Conceição, M. Abel, and L.F. De Ros. 2015. Geochemical modeling of diagenetic reactions in snorre field reservoir sandstones: A comparative study of computer codes. Brazilian Journal of Geology 45: 29–40.
Article
Google Scholar
Land, L.S., K.L. Milliken, and E.F. McBride. 1987. Diagenetic evolution of Cenozoic sandstones, Gulf of Mexico sedimentary basin. Sedimentary Geology 50: 195–225.
Article
Google Scholar
Mansurbeg, H., L.F. De Ros, S. Morad, J.M. Ketzer, M.A.K. El-Ghali, M.A. Caja, and R. Othman. 2012. Meteoric-water diagenesis in late cretaceous canyon-fill turbidite reservoirs from the Espírito Santo Basin, eastern Brazil. Marine and Petroleum Geology 37: 7–26.
Article
Google Scholar
McManus, K.M., and J.S. Hanor. 1988. Calcite and iron sulfide cementation of Miocene sediments flanking the west Hackberry salt dome, Southwest Louisiana, USA. Chemical Geology 74: 99–112.
Article
Google Scholar
McManus, K.M., and J.S. Hanor. 1993. Diagenetic evidence for massive evaporite dissolution, fluid flow, and mass transfer in the Louisiana Gulf Coast. Geology 21: 727–730.
Article
Google Scholar
Meshri, I.D., and P.J. Ortoleva. 1990. Prediction of reservoir quality through chemical modeling, AAPG Memoir, 49, 175. Tulsa, Okla: American Association of Petroleum Geologists.
Google Scholar
Milliken, M.L. 2005. Late Diagenesis and mass transfer in sandstone-shale sequences. In Sediments, Diagenesis, and sedimentary rocks. Treatise on geochemistry, ed. F.T. Mackenzie, vol. 7, 159–190. Oxford, UK: Elsevier.
Google Scholar
Mohriak, W., M. Nemčok, and G. Enciso. 2008. South Atlantic divergent margin evolution: Rift-border uplift and salt tectonics in the basins of SE Brazil. Geological Society, London, Special Publications 294: 365–398.
Article
Google Scholar
Morad, S. 1998. Carbonate cementation in sandstones: Distribution patterns and geochemical evolution. In Carbonate cementation in sandstones. IAS special publication 26, ed. S. Morad, 1–26. Oxford: Blackwell Scientific Publications.
Chapter
Google Scholar
Moraes, M.A. 1989. Diagenetic evolution of cretaceous-tertiary turbidite reservoirs, Campos Basin, Brazil. AAPG Bulletin 73: 598–612.
Google Scholar
Narasimhan, T.N., and P.A. Witherspoon. 1976. An integrated finite difference method for analyzing fluid flow in porous media. Water Resources Research 12: 57–64.
Article
Google Scholar
Parkhurst, D.L. 1995. User's guide to PHREEQC: A computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations, Water-Resources Investigations Report 95–4227, 143. Lakewood, CO, U.S: Geological Survey.
Google Scholar
Parkhurst, D.L., and C.A.J. Appelo. 1999. User's guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, Water-Resources Investigations Report 99–4259, 312. Reston, VA, U.S: Geological Survey.
Google Scholar
Parkhurst, D.L., and C.A.J. Appelo. 2013. Description of input and examples for PHREEQC version 3: A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, Techniques and Methods, 6-A43, 497. Reston, VA, US: Geological Survey.
Google Scholar
Posey, H.H., and J.R. Kyle. 1988. Fluid-rock interactions in the salt dome environment: An introduction and review. Chemical Geology 74: 1–24.
Article
Google Scholar
Pruess, K. 1991. TOUGH2: A general-purpose numerical simulator for multiphase fluid and heat flow, 102. Berekeley, California: Lawrence Berkeley Lab.
Book
Google Scholar
Ranganathan, V., and J.S. Hanor. 1988. Density-driven groundwater flow near salt domes. Chemical Geology 74: 173–188.
Article
Google Scholar
Saenz, C.T., P.C. Hackspacher, J.H. Neto, P.J. Iunes, S. Guedes, L.F.B. Ribeiro, and S.R. Paulo. 2003. Recognition of cretaceous, Paleocene, and Neogene tectonic reactivation through apatite fission-track analysis in Precambrian areas of Southeast Brazil: Association with the opening of the South Atlantic Ocean. Journal of South American Earth Sciences 15: 765–774.
Article
Google Scholar
Sarkar, A., J.A. Nunn, and J.S. Hanor. 1995. Free thermohaline convection beneath allochthonous salt sheets: An agent for salt dissolution and fluid flow in Gulf Coast sediments. Journal of Geophysical Research: Solid Earth 100 (B9): 18085–18092.
Article
Google Scholar
Sharp, J.M., Jr., T.R. Fenstemaker, C.T. Simmons, T.E. McKenna, and J.K. Dickinson. 2001. Potential salinity-driven free convection in a shale-rich sedimentary basin: Example from the Gulf of Mexico basin in South Texas. AAPG Bulletin 85: 2089–2110.
Google Scholar
Stumm, W., and J.J. Morgan. 2012. Aquatic chemistry: Chemical equilibria and rates in natural waters (Vol. 126), 1040. John Wiley & Sons.
Taylor, T.R., M.R. Giles, L.A. Hathon, T.N. Diggs, N.R. Braunsdorf, G.V. Birbiglia, M.G. Kittridge, C.I. Macaulay, and I.S. Espejo. 2010. Sandstone diagenesis and reservoir quality prediction: Models, myths, and reality. AAPG Bulletin 94: 1093–1132.
Article
Google Scholar
Teixeira, W.S., and M.G.C. Vincentelli. 2017. Geophysical characterization of exploratory plays in the central portion of Espírito Santo Basin. In 15th International Congress of the Brazilian Geophysical Society & EXPOGEF, Rio de Janeiro, Brazil, 453–458.
Google Scholar
Tempel, R.N., and W.J. Harrison. 2000. Simulation of burial diagenesis in the Eocene Wilcox Group of the Gulf of Mexico Basin. Applied Geochemistry 15: 1071–1083.
Article
Google Scholar
van Bennekom, A.J., J.F. Jansen, S.J. van der Gaast, J.M. van Iperen, and J. Pieters. 1989. Aluminium-rich opal: An intermediate in the preservation of biogenic silica in the Zaire (Congo) deep-sea fan. Deep Sea Research Part A. Oceanographic Research Papers 36: 173–190.
Article
Google Scholar
Worden, R.H., and S.D. Burley. 2003. Sandstone diagenesis: The evolution of sand to stone. In Sandstone Diagenesis: Recent and Ancient, eds. Stuart D. Burley and Richard H. Worden, Blackwell, pp. 1–44. https://www.scopus.com/record/display.uri?eid=2-s2.0-84978020854&origin=inward&txGid=211bf11edd947e29b1acf8ee622ca650
Xu, T. and K.Pruess. 1998. Coupled modeling of non-isothermal multiphase flow, solute transport and reactive chemistry in porous and fractured media: 1. Model development and validation. Lawrence Berkeley National Laboratory, Berkeley, California, 38.
Yang, L., T. Xu, K. Liu, B. Peng, Z. Yu, and X. Xu. 2017. Fluid–rock interactions during continuous diagenesis of sandstone reservoirs and their effects on reservoir porosity. Sedimentology 64: 1303–1321. http://homepage.ufp.pt/biblioteca/HydrocarbonPotentiaOflInfraSaltSedimentsAngola/Images/Plate006.4-EspSantoOffs.jpg. Accessed 1 Sept. 2018.
Article
Google Scholar