Allègre, C.J. 2008. Isotope geology. Cambridge: Cambridge University Press.
Book
Google Scholar
Beerling, D.J., and R.A. Berner. 2000. Impact of a Permo-carboniferous high O2 event on the terrestrial carbon cycle. Proceedings of the National Academy of Sciences of the United States of America 97 (23): 12428–12432.
Article
Google Scholar
Berger, A., M.F. Loutre, and V. Dehant. 1989. Pre-quaternary Milankovitch frequencies. Nature 342 (6246): 133.
Article
Google Scholar
Berger, A., M.F. Loutre, and J. Laskar. 1992. Stability of the astronomical frequencies over the earth history for paleoclimate studies. Science 255 (5044): 560–566.
Article
Google Scholar
Berner, R.A. 2005. The carbon and sulfur cycles and atmospheric oxygen from middle Permian to middle Triassic. Geochimica et Cosmochimica Acta 69 (13): 3211–3217.
Article
Google Scholar
Berner, R.A. 2006. Geocarbsulf: A combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et Cosmochimica Acta 70 (23): 5653–5664.
Article
Google Scholar
Berner, R.A. 2009. Phanerozoic atmospheric oxygen: New results using the geocarbsulf model. American Journal of Science 309 (7): 603–606.
Article
Google Scholar
Berner, R.A., D.J. Beerling, R. Dudley, J.M. Robinson, and R.A. Wildman. 2003. Phanerozoic atmospheric oxygen. Annual Review of Earth and Planetary Sciences 31 (1): 105–134.
Article
Google Scholar
Briggs, J., D.J. Large, C. Snape, T. Drage, D. Whittles, M. Cooper, J.H.S. Macquaker, and B.F. Spiro. 2007. Influence of climate and hydrology on carbon in an Early Miocene peatland. Earth and Planetary Science Letters 253 (3–4): 445–454.
Article
Google Scholar
Diessel, C.F.K. 1992. Coal-bearing depositional system. New York: Springer-Verlag.
Book
Google Scholar
Fluteau, F., J. Besse, J. Broutin, and M. Berthelin. 2001. Extension of Cathaysian flora during the Permian: Climatic and palaeogeographic constraints. Earth and Planetary Science Letters 193 (3–4): 603–616.
Article
Google Scholar
Ghil, M., M.R. Allen, M.D. Dettinger, K. Ide, D. Kondrashov, M.E. Mann, A.W. Robertson, A. Saunders, Y. Tian, F. Varadi, and P. Yiou. 2002. Advanced spectral methods for climatic time series. Reviews of Geophysics 40 (1): 1–41.
Article
Google Scholar
Guizhou Administration of Coal Geology 2002. Geological Survey Report of Xinhua Coal Mine in Songhe mining area, Panxian County, Guizhou (in Chinese).
Google Scholar
Guo, Y. 1990a. The palaeoclimate of late Permian in western Guizhou. Coal Geology of China 2 (3): 18–20 (in Chinese with English abstract).
Google Scholar
Guo, Y. 1990b. Palaeoecology of flora from coal measures of upper Permian in western Guizhou. Journal of China Coal Society 15 (1): 48–49 (in Chinese with English abstract).
Google Scholar
Han, D., and Q. Yang. 1980. Coal geology of China (volume 2). Beijing: Publishing House of China Coal Industry (in Chinese).
Google Scholar
Hilton, J., and C.J. Cleal. 2007. The relationship between Euramerican and Cathaysian tropical floras in the late Palaeozoic: Palaeobiogeographical and palaeogeographical implications. Earth Science Reviews 85 (3–4): 85–116.
Article
Google Scholar
ICS (International Commission on Stratigraphy), 2018. International Chronostratigraphic Chart. http://www.stratigraphy.org/ICSchart/ChronostratChart2018-08.pdf.
Google Scholar
Kerr, R.A. 1981. Milankovitch climate cycles: Old and unsteady. Science 213 (4512): 1095–1096.
Article
Google Scholar
Korhola, A., K. Tolonen, J. Turunen, and H. Jungner. 1995. Estimating long-term carbon accumulation rates in boreal peatlands by radiocarbon dating. Radiocarbon 37 (2): 575–584.
Article
Google Scholar
Kremenetski, K.V., A.A. Velichko, O.K. Borisova, G.M. Macdonald, L.C. Smith, K.E. Frey, and L.A. Orlova. 2003. Peatlands of the western Siberian lowlands: Current knowledge on zonation, carbon content and Late Quaternary history. Quaternary Science Reviews 22 (5–7): 703–723.
Article
Google Scholar
Lähteenoja, O., K. Ruokolainen, L. Schulman, and M. Oinonen. 2009. Amazonian peatlands: An ignored C sink and potential source. Global Change Biology 15 (9): 2311–2320.
Article
Google Scholar
Large, D.J. 2007. A 1.16 ma record of carbon accumulation in Western European peatland during the Oligocene from the Ballymoney lignite, Northern Ireland. Journal of the Geological Society 164 (6): 1233–1240.
Article
Google Scholar
Large, D.J., T.F. Jones, C. Somerfield, M.C. Gorringe, B.F. Spiro, J.H.S. Macquaker, and B.P. Atkin. 2003. High-resolution terrestrial record of orbital climate forcing in coal. Geology 31 (4): 303–306.
Article
Google Scholar
Large, D.J., and C. Marshall. 2014. Use of carbon accumulation rates to estimate the duration of coal seams and the influence of atmospheric dust deposition on coal composition. Geological Society, London, Special Publications 404 (1): 1–9.
Google Scholar
Li, X., G. Shen, and B. Tian. 1995. China floras in geological history. Guangzhou: Science and Technology of Guangzhou Press (in Chinese).
Google Scholar
Li, X., and X. Wu. 1996. Late Paleozoic phytogeographic provinces in China and its adjacent regions. Review of Palaeobotany and Palynology 90 (1–2): 41–62.
Article
Google Scholar
Liu, B., X. Xu, X. Pan, H. Huang, and Q. Xu. 1993. Sedimentary crust evolution and mineral formation of South China. Beijing: Science Press (in Chinese).
Google Scholar
Liu, G. 1990. Permo-carboniferous paleogeography and coal accumulation in North China and South China continental plates. International Journal of Coal Geology 16 (1): 73–117.
Article
Google Scholar
Mitsch, W.J., and J.G. Gosselink. 2007. Wetlands (the fourth Edition). New York: Wiley.
Google Scholar
Moore, P.D. 1987. Ecological and hydrological aspects of peat formation. Geological Society, London, Special Publications 32 (1): 7–15.
Article
Google Scholar
Muller, J., M. Kylander, A. Martinez-Cortizas, R.A.J. Wüst, D. Weiss, K. Blake, B. Coles, and R. Garcia-Sanchez. 2008. The use of principle component analyses in characterising trace and major elemental distribution in a 55 kyr peat deposit in tropical Australia: Implications to paleoclimate. Geochimica et Cosmochimica Acta 72 (2): 449–463.
Article
Google Scholar
Page, S.E., J.O. Rieley, and C.J. Banks. 2011. Global and regional importance of the tropical peatland carbon pool. Global Change Biology 17 (2): 798–818.
Article
Google Scholar
Page, S.E., R.A.J. Wűst, D. Weiss, J.O. Rieley, W. Shotyk, and S.H. Limin. 2004. A record of Late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): Implications for past, present and future carbon dynamics. Journal of Quaternary Science 19 (7): 625–635.
Article
Google Scholar
Schwarzacher, W. 1993. Cyclostratigraphy and the Milankovitch theory. Amsterdam: Elsevier.
Google Scholar
Shao, L., H. Liu, B. Tian, and P. Zhang. 1998. Sedimentary evolution and its controls on coal accumulation for the late Permian in the upper Yangtze area. Acta Sedimentologica Sinica 16 (2): 55–60 (in Chinese with English abstract).
Google Scholar
Tian, B., and L. Zhang. 1980. Fossil atlas of Wangjiazhai mining area Shuicheng Guizhou. Beijing: Coal Industry Press (in Chinese).
Google Scholar
Vitt, D.H. 1994. An overview of factors that influence the development of Canadian peatlands. Memoirs of the Entomological Society of Canada 169: 7–20.
Article
Google Scholar
Wang, D., Z. Yan, H. Liu, D. Lü, and Y. Hou. 2018. The net primary productivity of mid-Jurassic peatland and its control factors: Evidenced by the Ordos Basin. International Journal of Mining Science and Technology 2: 177–185.
Article
Google Scholar
Wang, H., L. Shao, D.J. Large, and P.B. Wignall. 2011. Constraints on carbon accumulation rate and net primary production in the Lopingian (late Permian) tropical peatland in SW China. Palaeogeography, Palaeoclimatology, Palaeoecology 300 (1–4): 152–157.
Article
Google Scholar
Wang, J. 2006. Practical manual for new methods and technology of modern coal exploration, coal mine geophysical exploration and logging. Beijing: China Coal Industry Press (in Chinese).
Google Scholar
Wang, J.D., and H.M. Li. 1998. Paleo-latitude variation of Guizhou terrain from Devonian to cretaceous. Chinese Journal of Geochemistry 17 (4): 356–361.
Article
Google Scholar
Wang, Y., and Y. Jin. 2000. Permian palaeogeographic evolution of the Jiangnan Basin, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 160 (1): 35–44.
Google Scholar
Weedon, G.P. 2003. Time-series analysis and Cyclostratigraphy: Examining stratigraphic Records of Environmental Cycles. New York: Cambridge University Press.
Book
Google Scholar
Yan, Z., L. Shao, S. Wang, D.J. Large, H. Wang, and Q. Sun. 2016. Net primary productivity and its control factors of early cretaceous peatlands: Evidence from no. 6 coal in the Jiergalangtu sag of the Erlian Basin. Acta Sedimentologica Sinica 34 (6): 1068–1076 (in Chinese with English abstract).
Google Scholar
Yu, J., and Z. Li. 2003. Wavelet transform of logging data and its geological significance. Journal of China University of Mining and Technology 32 (3): 336–339.
Google Scholar
Yu, Z. 2011. Holocene carbon flux histories of the world's peatlands: Global carbon-cycle implications. Holocene 21 (5): 761–774.
Article
Google Scholar
Yu, Z., J. Loisel, D.J. Charman, D.W. Beilman, and P. Camill. 2014. Holocene peatland carbon dynamics in the circum-arctic region: An introduction. Holocene 24 (9): 1021–1027.
Article
Google Scholar
Ziegler, A.M. 1990. Phytogeographic patterns and continental configurations during the Permian period. In Geological society of London memoir 12: Palaeozoic Palaeogeography and biogeography, ed. W.S. McKerrow and C.R. Scotese. London: Geological Society of London.
Google Scholar
Ziegler, A.M., M.L. Hulver, and D.B. Rowley. 1997. Permian world topography and climate. In Late glacial and postglacial environmental changes: Quaternary, carboniferous-Permian, and Proterozoic, ed. I.P. Martini. New York: Oxford University Press.
Google Scholar